prokaryotic expression system
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hongqiang Lou ◽  
Xusheng Li ◽  
Xiusheng Sheng ◽  
Shuiqin Fang ◽  
Shaoye Wan ◽  
...  

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter’s syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhen Zhu ◽  
Guanggang Qu ◽  
Changjiang Wang ◽  
Lei Wang ◽  
Jige Du ◽  
...  

Mycoplasma capricolum subsp. capripneumoniae (Mccp) is the cause of contagious caprine pleuropneumonia (CCPP), which is a highly significant respiratory disease in goats leading to significant economic losses in Africa and Asia. Currently available procedures for the diagnosis of CCPP have some limitations in sensitivity, specificity, operation time, requirement of sophisticated equipment or skilled personnel, and cost. In this study, we developed a rapid, sensitive, and specific colloidal gold-based immunochromatographic assay (GICA) strip for the efficient on-site detection of antibodies against Mccp in the serum within 10 min. For the preparation of this colloidal GICA strip, recombinant P20 protein, the membrane protein of Mccp, was expressed by Escherichia coli prokaryotic expression system after purification was used as the binding antigen in the test. The rabbit anti-goat immunoglobulin G labeled with the colloidal gold was used as the detection probe, whereas the goat anti-rabbit immunoglobulin G was coated on the nitrocellulose membrane as the control line. The concentration of the coating antibody was optimized, and the effectiveness of this colloidal GICA strip was evaluated. Our results proved that the detection limit of the test strip was up to 1:64 dilutions for the Mccp antibody-positive serum samples with no cross-reactivity with other pathogens commonly infecting small ruminants,including goat pox virus, peste des petits ruminants virus, foot-and-mouth disease virus type A, or other mycoplasmas. Moreover, the colloidal GICA strip was more sensitive and specific than the indirect hemagglutination assay for the detection of Mccp antibodies. The 106 clinical serum samples were detected by the colloidal GICA strip compared with the complement fixation test, demonstrating an 87.74% concordance with the complement fixation test. This novel colloidal GICA strip would be an effective tool for the cost-effective and rapid diagnosis of CCPP in the field.


2021 ◽  
Vol 7 (12) ◽  
pp. 999
Author(s):  
Manisha Shukla ◽  
Pankaj Chandley ◽  
Harsimran Kaur ◽  
Anup K. Ghosh ◽  
Shivaprakash M. Rudramurthy ◽  
...  

Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. The diagnosis of systemic candidiasis is difficult due to the absence of significant clinical symptoms in patients. We investigated the diagnostic potential of recombinant secreted aspartyl proteinase 2 (rSap2) from C. parapsilosis for the detection of Candida infection. The rSap2 protein was successfully cloned, expressed and purified using Ni-NTA chromatography under denaturing conditions using an E. coli-based prokaryotic expression system, and refolded using a multi-step dialysis procedure. Structural analysis by CD and FTIR spectroscopy revealed the refolded protein to be in its near native conformation. Immunogenicity analysis demonstrated the rSap2 protein to be highly immunogenic as evident from significantly high titers of Sap2-specific antibodies in antigen immunized Balb/c mice, compared to sham-immunized controls. The diagnostic potential of rSap2 protein was evaluated using immunoblotting and ELISA assays using proven candidiasis patient serum and controls. Immunoblotting results indicate that reactivity to rSap2 was specific to candidiasis patient sera with no cross reactivity observed in healthy controls. Increased levels of anti-Sap2-specific Ig, IgG and IgM antibodies were observed in candidiasis patients compared to controls and was similar in sensitivity obtained when whole Candida was used as coating antigen. In summary, the rSap2 protein from C. parapsilosis has the potential to be used in the diagnosis of systemic candidiasis, providing a rapid, convenient, accurate and cost-effective strategy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuli Chen ◽  
Hui Li ◽  
Lichao Yang ◽  
Sha Wen ◽  
Xuejing Huang ◽  
...  

Abstract Background Never in mitosis gene-A (NIMA)-related expressed kinase 2 (NEK2) is a serine/threonine protein kinase regulated by the cell cycle. The purpose of this study was to obtain NEK2 protein to prepare an anti-NEK2 monoclonal antibody (mAb) and explore the application of the anti-NEK2 mAb of therapeutic and diagnostic in hepatocellular carcinoma (HCC). Results The NEK2 gene sequence was cloned from the normal liver cell line HL7702, and the full-length NEK2 gene sequence was cloned into the prokaryotic expression vector pET30a and transformed into Escherichia coli BL21 (DE3) cells. The recombinant fusion protein was obtained under optimized conditions and injected in BALB/c mice to prepare an anti-NEK2 mAb. By screening, we obtained a stable hybridoma cell line named 3A3 that could stably secrete anti-NEK2 mAb. Anti-NEK2 3A3 mAb was purified from ascites fluid. The isotype was IgG1, and the affinity constant (Kaff) was 6.0 × 108 L/mol. Western blot, indirect enzyme-linked immunosorbent assay (iELISA), immunofluorescence and immunocytochemical analyses showed that the mAb could specifically recognize the NEK2 protein. MTT assays showed that the mAb 3A3 could inhibit the proliferation of HCC cells. KEGG pathway analysis showed that NEK2 might affected pathways of the cell cycle. Moreover, NEK2-related genes were mainly enriched in the S and G2 phases and might act as tumor-promoting genes by regulating the S/G2 phase transition of HCC cells. Conclusions An anti-NEK2 mAb with high potency, high affinity and high specificity was prepared by prokaryotic expression system in this study and may be used in the establishment of ELISA detection kits and targeted treatment of liver cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Du ◽  
Yun-Qi Liu ◽  
Ying-Shuang Xu ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
...  

AbstractEscherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 812
Author(s):  
Lu Gao ◽  
Yanli Wang ◽  
Mureed Abbas ◽  
Tingting Zhang ◽  
Enbo Ma ◽  
...  

Small interfering RNAs (siRNAs) are non-coding RNAs with a length of 21~23 nucleotides (nt) and present in almost all eukaryotes. The formation of siRNA is a highly conserved post-transcriptional gene-silencing mechanism mediated by key proteins, including Dicer2, Argonaute2 (Ago2) and R2D2. R2D2 has been identified as a double-stranded RNA (dsRNA)-binding protein and reported as an integral component of the siRNA pathway in Drosophila. However, the involvement of R2D2 in the siRNA pathway of Locusta migratoria is still unknown. In the present study, we identified an LmR2D2 gene from the transcriptome of L. migratoria. It consists of a 954-bp open reading frame that encodes a protein of 318 amino acid residues. Further sequence analysis revealed that LmR2D2 possesses two tandem dsRNA-binding domains (dsRBD) at the N-terminus. Analysis of the developmental expression profile of LmR2D2 indicated that its transcript level was stable in third-instar nymphs of L. migratoria, whereas the tissue-dependent expression profile exhibited high levels of expression of LmR2D2 in the testis and ovary. When LmR2D2 was silenced by RNAi, the RNAi efficiency against Lmβ-tubulin as a marker gene was significantly diminished, as indicated by the 37.7% increased Lmβ-tubulin transcript level. Additionally, the prokaryotic expression system was used to obtain the LmR2D2 supernatant protein. By incubating the LmR2D2 protein with biotin-dsRNA, we found that LmR2D2 can bind to dsRNA in vitro, which supports our conclusion that LmR2D2 plays an essential role in the siRNA pathway of L. migratoria.


2021 ◽  
Author(s):  
Ying-Shuang Xu ◽  
Fei Du ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
Zi-Xu Zhang ◽  
...  

Abstract Escherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PLacUV5), which produces more T7 RNAP than wild-type lac promoter (PLacWT) to promote the production of recombinant proteins. However, there is a resource allocated limitation between cell growth and protein production when producing autolytic proteins or membrane proteins. T7 RNAP is the key factor to solve this problem. Hence, we replaced respectively PLacUV5 with other inducible promoters: arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet) to optimize the production of recombinant protein by regulating the transcription level of T7 RNAP. Compared with BL21 (DE3), the constructed engineering strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the glucose dehydrogenase (GDH) production, the engineered strains BL21 (DE3::tet) exhibited great biomass, cell survival rate and foreign protein expression level. In addition, these engineered strains had been successfully applied to the production of other membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and E. coli F-ATPase subunit b (Ecb). The engineering strains constructed in this paper provided more host choices for the production of recombinant proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Li ◽  
Wen-Bing Zhang ◽  
Yan-Min Shan ◽  
Zhuo-Ran Zhang ◽  
Bao-Ping Pang

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) play a fundamental role in insect olfaction. Galeruca daurica (Joannis) is a new pest with outbreak status in the Inner Mongolia grasslands, northern China. In this study, six olfactory protein genes (GdauOBP1, GdauOBP6, GdauOBP10, GdauOBP15, GdauCSP4, and GdauCSP5) were cloned by RACE and expressed by constructing a prokaryotic expression system. Their binding affinities to 13 compounds from host volatiles (Allium mongolicum) were determined by fluorescence-binding assay. In order to further explore the olfactory functions of GdauOBP15 and GdauCSP5, RNA interference (RNAi) and electroantennogram (EAG) experiments were conducted. Ligand-binding assays showed that the binding properties of the six recombinant proteins to the tested volatiles were different. GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 could bind several tested ligands of host plants. It was suspected that GdauOBP6, GdauOBP15, GdauCSP4, and GdauCSP5 were related to the host location in G. daurica. We also found that there were different EAG responses between males and females when the GdauOBP15 and GdauCSP5 genes were silenced by RNAi. The EAG response of G. daurica females to 2-hexenal was significantly decreased in dsRNA-OBP15-injected treatment compared to the control, and the dsRNA-CSP5-treated females significantly reduced EAG response to eight tested host volatiles (1,3-dithiane, 2-hexenal, methyl benzoate, dimethyl trisulfide, myrcene, hexanal, 1,3,5-cycloheptatriene, and p-xylene). However, the EAG response had no significant difference in males. Both GdauOBP15 and GdauCSP5 may have different functions between males and females in G. daurica and may play more important roles in females searching for host plants.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 357
Author(s):  
Zhengqing Yu ◽  
Yujia Lu ◽  
Zhaoyi Liu ◽  
Muhammad Tahir Aleem ◽  
Junlong Liu ◽  
...  

Almost every warm-blooded animal can be an intermediate host for Toxoplasma gondii (T. gondii); there is still no efficient vaccine and medicine available for T. gondii infections. Detected on the surface of free tachyzoites of T. gondii, T. gondii ribosomal protein P2 (TgRPP2) has been identified as a target for protection against toxoplasmosis. In the present study, TgRPP2 was firstly expressed in a prokaryotic expression system, and the purified recombinant TgRPP2 (rTgRPP2) was characterized by its modulation effects on murine macrophages. Then, the purified rTgRPP2 was injected into mice to evaluate the immune protection of rTgRPP2. The results indicated that rTgRPP2 could bind to murine Ana-1 cells and showed good reactogenicity. After incubation with purified rTgRPP2, the proliferation, apoptosis, phagocytosis, nitric oxide (NO) production, and cytokines secreted by murine macrophages were modulated. Furthermore, the in vivo experiments indicated that animals immunized with rTgRPP2 could generate a significantly high level of antibodies, cytokines, and major histocompatibility complex (MHC) molecules, leading to a prolonged survival time. All of the results indicated that murine macrophages could be regulated by rTgRPP2 and are essential for the maintenance of tissue homeostasis. Immunization with rTgRPP2 triggered significant protection, with prolonged survival time in a mice model of acute toxoplasmosis. Our results lend credibility to the idea that rTgRPP2 could be a potential target for drug design and vaccine development.


2021 ◽  
Author(s):  
Ali Iftikhar

Abstract BackgroundOptimization of conditions for the recombinant production of proteins in a prokaryotic expression system is essential as the recombinant proteins impose a metabolic burden on cell's growth leading to low protein yield and low protein expression resulting from cell death.Main textThe concentration of media components is optimized to accommodate for depleted nutrients due to foreign protein expression. The temperature is optimized to reduce proteolytic degradation and accumulation of protein as inclusion bodies in Escherichia coli. The concentration of inducer and time of induction for high protein yield is also optimized. These optimization conditions depend on the promoter under which the gene of interest is present and the characteristics of the target protein.ConclusionIn the past few years, many optimization conditions for the production of recombinant proteins in Escherichia coli have been studied. These conditions depend mainly upon the promoter used to produce protein and the type of protein produced. Optimizing the expression parameters of protein produced in Escherichia coli ensures maximum yield of the desired protein.


Sign in / Sign up

Export Citation Format

Share Document