An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold

2005 ◽  
Vol 114 (1-2) ◽  
pp. 101-103 ◽  
Author(s):  
Christal L. Vitiello ◽  
Carl R. Merril ◽  
Sankar Adhya
2021 ◽  
Author(s):  
Yusuke Sato ◽  
Akimasa Matsugami ◽  
Satoru Watanabe ◽  
Fumiaki Hayashi ◽  
Munehito Arai ◽  
...  

1999 ◽  
Vol 80 (8) ◽  
pp. 1919-1927 ◽  
Author(s):  
Antero Airaksinen ◽  
Merja Roivainen ◽  
Glyn Stanway ◽  
Tapani Hovi

Enteroviruses possess a highly conserved 9 amino acid stretch of mainly hydrophobic character in the capsid protein VP1. A novel strategy, combining site-saturation mutagenesis and a single-tube cloning and transfection procedure, has been developed for the analysis of this motif in coxsackievirus A9 (CAV-9). Four individual amino acids were separately mutated. Mutagenesis of three of the four positions in CAV-9 resulted in a number of viable but impaired mutant strains, each containing a single amino acid substitution. In contrast, no mutants with amino acid substitutions at leucine 31 were isolated, although three different leucine codons were found among the viruses recovered. Small plaque size was regularly associated with reduced yields of infectious virus and an amino acid substitution at the target site in the viruses isolated from the site-saturated virus pools. From the range of amino acids observed in viable mutants, it was possible to estimate the characteristics that are required at individual amino acid positions. It seems that in the motif studied here, a periodic hydrophobicity profile needs to be conserved. The constraints observed on the ranges of acceptable amino acids presumably reflect the structural–functional requirements that have resulted in the conservation of the motif.


Author(s):  
Renganayaki G. ◽  
Achuthsankar S. Nair

Sequence alignment algorithms and  database search methods use BLOSUM and PAM substitution matrices constructed from general proteins. These de facto matrices are not optimal to align sequences accurately, for the proteins with markedly different compositional bias in the amino acid.   In this work, a new amino acid substitution matrix is calculated for the disorder and low complexity rich region of Hub proteins, based on residue characteristics. Insights into the amino acid background frequencies and the substitution scores obtained from the Hubsm unveils the  residue substitution patterns which differs from commonly used scoring matrices .When comparing the Hub protein sequences for detecting homologs,  the use of this Hubsm matrix yields better results than PAM and BLOSUM matrices. Usage of Hubsm matrix can be optimal in database search and for the construction of more accurate sequence alignments of Hub proteins.


Sign in / Sign up

Export Citation Format

Share Document