scholarly journals Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: Effects of serotype and site of administration

2008 ◽  
Vol 48 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Ji-jing Pang ◽  
Amanda Lauramore ◽  
Wen-tao Deng ◽  
Qiuhong Li ◽  
Thomas J. Doyle ◽  
...  
2012 ◽  
Vol 48 ◽  
pp. S159
Author(s):  
W.M. Dickerson ◽  
L.A. Beausang ◽  
A. Saab ◽  
K. Leong ◽  
E.M. Alderman

2011 ◽  
Vol 79 (4) ◽  
pp. 1660-1670 ◽  
Author(s):  
Fuminori Kato ◽  
Noriko Kadomoto ◽  
Yuko Iwamoto ◽  
Katsuaki Bunai ◽  
Hitoshi Komatsuzawa ◽  
...  

ABSTRACTThe exfoliative toxin (ET) is a major virulence factor ofStaphylococcus aureusthat causes bullous impetigo and its disseminated form, staphylococcal scalded-skin syndrome (SSSS). ET selectively digests one of the intracellular adhesion molecules, desmoglein 1, of epidermal keratinocytes and causes blisters due to intraepidermal cell-cell dissociation. MostS. aureusstrains that cause blistering disease produce either ETA or ETB. They are serologically distinct molecules, where ETA is encoded on a phage genome and ETB is enocded on a large plasmid. ETA-producingS. aureusstrains are frequently isolated from impetigo patients, and ETB-producingS. aureusstrains are isolated from SSSS. ET-induced blister formation can be reproduced with the neonatal mouse. To determine the regulatory mechanism of ET production, we investigated the role of the two-component systems and global regulators foretaoretbexpressionin vitroandin vivowith the mouse model. Western blot and transcription analyses using a series of mutants demonstrate ETA production was downregulated bysigB,sarS, andsarA, while ETB production was downregulated bysigBandsarAbut not bysarS. Production of both toxins is upregulated bysaeRS,arlRS, andagrCA. Furthermore, by thein vivoneonatal mouse model,sigBandsarSbut notsarAnegatively regulate the exfoliation activity of the ETA-producing strain, whilesarAnegatively regulates the ETB-producing strain. In both strains,saeRS,arlRS, andagrCApositively regulate the exfoliation activityin vivo. The data illustrate similar but distinct regulatory mechanisms for ETA and ETB productionin S. aureus in vitroas well asin vivo.


2016 ◽  
Vol 42 (11) ◽  
pp. 1813-1824 ◽  
Author(s):  
Jessica Mendes Nadal ◽  
Mona Lisa Simionatto Gomes ◽  
Débora Maria Borsato ◽  
Martinha Antunes Almeida ◽  
Fernanda Malaquias Barboza ◽  
...  

2018 ◽  
Vol 48 (10) ◽  
pp. 3299-3316 ◽  
Author(s):  
Jingyuan Zhang ◽  
Quan Wang ◽  
Dunia Abdul‐Aziz ◽  
Jonelle Mattiacio ◽  
Albert S. B. Edge ◽  
...  

Author(s):  
Natalya V. Krylova ◽  
Svetlana P. Ermakova ◽  
Vyacheslav F. Lavrov ◽  
Irina A. Leneva ◽  
Galina G. Kompanets ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Isabelle Anna Zink ◽  
Erika Wimmer ◽  
Christa Schleper

Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.


1995 ◽  
Vol 62 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Mercè Viader ◽  
Eugènia Mato ◽  
Dolors Tugues ◽  
Oscar Fornas ◽  
Manel Puig-Domingo ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev193417
Author(s):  
Gregory A. Quaife-Ryan ◽  
Richard J. Mills ◽  
George Lavers ◽  
Holly K. Voges ◽  
Celine J. Vivien ◽  
...  

ABSTRACTThe inability of the adult mammalian heart to regenerate represents a fundamental barrier in heart failure management. By contrast, the neonatal heart retains a transient regenerative capacity, but the underlying mechanisms for the developmental loss of cardiac regenerative capacity in mammals are not fully understood. Wnt/β-catenin signalling has been proposed as a key cardioregenerative pathway driving cardiomyocyte proliferation. Here, we show that Wnt/β-catenin signalling potentiates neonatal mouse cardiomyocyte proliferation in vivo and immature human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) proliferation in vitro. By contrast, Wnt/β-catenin signalling in adult mice is cardioprotective but fails to induce cardiomyocyte proliferation. Transcriptional profiling and chromatin immunoprecipitation sequencing of neonatal mouse and hPSC-CMs revealed a core Wnt/β-catenin-dependent transcriptional network governing cardiomyocyte proliferation. By contrast, β-catenin failed to re-engage this neonatal proliferative gene network in the adult heart despite partial transcriptional re-activation of a neonatal glycolytic gene programme. These findings suggest that β-catenin might be repurposed from regenerative to protective functions in the adult heart in a developmental process dependent on the metabolic status of cardiomyocytes.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86937 ◽  
Author(s):  
Shu Tang ◽  
Yingjun Lv ◽  
Hongbo Chen ◽  
Abdelnasir Adam ◽  
Yanfen Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document