A historical perspective of Global Warming Potential from Municipal Solid Waste Management

2013 ◽  
Vol 33 (9) ◽  
pp. 1926-1933 ◽  
Author(s):  
Komal Habib ◽  
Jannick H. Schmidt ◽  
Per Christensen
2016 ◽  
Vol 35 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Bhupendra K Sharma ◽  
Munish K Chandel

Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO2 eq t−1 of municipal solid waste, 0.124 kg SO2 eq t−1, 0.46 kg PO4−3 eq t−1, 0.44 kg 1,4-DB eq t−1 to 892.34 kg CO2 eq t−1, 0.121 kg SO2 eq t−1, 0.36 kg PO4−3 eq t−1, 0.40 kg 1,4-DB eq t−1, respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 785
Author(s):  
Trust Nhubu ◽  
Edison Muzenda

Six municipal solid waste management (MSWM) options (A1–A6) in Harare were developed and analyzed for their global warming, acidification, eutrophication and human health impact potentials using life cycle assessment methodology to determine the least impactful option in Harare. Study findings will aid the development of future MSWM systems in Harare. A1 and A2 considered the landfilling and incineration, respectively, of indiscriminately collected MSW with energy recovery and byproduct treatment. Source-separated biodegradables were anaerobically treated with the remaining non-biodegradable fraction being incinerated in A3 and landfilled in A4. A5 and A6 had the same processes as in A3 and A4, respectively, except the inclusion of the recovery of 20% of the recoverable materials. The life cycle stages considered were collection and transportation, materials recovery, anaerobic digestion, landfilling and incineration. A5 emerged as the best option. Materials recovery contributed to impact potential reductions across the four impact categories. Sensitivity analysis revealed that doubling materials recovery and increasing it to 28% under A5 resulted in zero eutrophication and acidification, respectively. Increasing material recovery to 24% and 26% under A6 leads to zero acidification and eutrophication, respectively. Zero global warming and human health impacts under A6 are realised at 6% and 9% materials recovery levels, respectively.


2012 ◽  
Vol 11 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Ioan Ianos ◽  
Daniela Zamfir ◽  
Valentina Stoica ◽  
Loreta Cercleux ◽  
Andrei Schvab ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 1029-1038
Author(s):  
Antonio Lopez-Arquillos ◽  
Juan Carlos Rubio-Romero ◽  
Jesus Carrillo-Castrillo ◽  
Manuel Suarez-Cebador ◽  
Fuensanta Galindo Reyes

Sign in / Sign up

Export Citation Format

Share Document