Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes

2014 ◽  
Vol 34 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Aikaterini I. Vavouraki ◽  
Vassiliki Volioti ◽  
Michael E. Kornaros
2018 ◽  
Vol 6 (2) ◽  
pp. 609
Author(s):  
S Saraswati

The resources and reserves of oil which is a non renewable energy are very limited, while the oil consumption is increasing continuously. It is necessary to look for alternative energy. Etanol, a liquid energy, is a renewable alternative energy. Glucose can be used as raw material for etanol production. Glucose can be obtained by enzymatic hydrolysis of bagasse which is a solid waste of sugar canefactory. The objective of this research was to get the optimum condition of etanol production using bagasse as raw material. The experimental research consisted of 2 steps. First step : enzymatic hydrolysis of bagasse with chemical pretreatment process, and the second step was fermentation process using Zymomonas mobilis bacteria. Variables of thefirst step were the NaOH concentration (5%, 7% and 9%) as a pretreatment agent, and cellulase enzyme used (30, 40 and 50 cellulase enzyme  units/gram bagasse). For the second step, the variables were glucose concentration (I2.5%, 15%, 20%, 22.5%, and 25%) and the fermentation time (20, 24, 28, 32, 36, 40 and 48 hours). The experiment showed that the best result of the enzymatic hydrolysis could be obtained by NaOH 7% as chemical pretreatment agent and using 50 units of cellulase enzyme/gram bagasse. The cellulose conversion of bagasse was 87% within 42 hours period time. The highest etanol concentration of the fermentation process was 9.238% (weight %) and the yield was 0.4912 grams etanol/gram glucose. It was reached by using 22.5% glucose during 48 hours fermentation  time.Keywords: etanol; fermentation; Zymomonas mobilis; glucose; hydrolysis; cellulase enzyme; pretreatment;bagasse AbstrakCadangan minyak bumi yang merupakan non renewable energy (energi tak terbarukan) sangat terbatas, sedang konsumsinya terus meningkat.  Untuk itu perlu  dicari energi alternatif. Etanol merupakan salah satu energi cair alternatif yang terbarukan (renewable). Bahan baku etanol antara lain adalah glukosa. Glukosa dapat diperoleh dari hidrolisa enzimatik bagas yang merupakan limbah pabrik gula. Penelitian ini bertujuan  untuk  mendapatkan  kondisi yang  optimum  dari pembuatan  etanol  dengan  bahan baku bagas. Penelitian  experimental  meliputi  dua tahap.  Tahap I  : proses  hidrolisa  enzimatik  dari bagas dengan perlakuan pendahuluan  (pretreatment), dan tahap II adalah proses fermentasi  dengan bakteri Zymomonas  mobilis.  Variabel pada  tahap I  adalah  konsentrasi  NaOH  sebagai  pretreatment   agent sebesar 5%, 7% dan 9% serta pemakaian enzim selulase : 30, 40 dan 50 unit enzim selulase/gram bagas. Variabel untuk tahap II  adalah konsentrasi glukosa:  12.5%,  15%, 20%, 22.5%  dan 25% dan waktu fermentasi  20, 24, 28, 32, 36, 40  dan 48 jam.  Hasil penelitian  menunjukkan  bahwa  untuk  hidrolisa enzimatik hasil yang terbaik diperoleh dengan NaOH 7% dan 50 unit enzim selulase/gram bagas dengan konversi selulosa 87% dan waktu 42 jam. Untuk fermentasi kadar etanol tertinggi diperoleh pada konsentrasi glukosa 22.5% yaitu sebesar 9.238%, waktu 48 jam dan yield 0.4912 gram etanollgram glukosa.Kata Kunci: etanol; fennentasi; Zymomonas mobilis; glukosa; hidrolisa ; enzim selulase; pretreatment; bagas.


Author(s):  
Xianqing Lv ◽  
Guangxu Yang ◽  
Zhenggang Gong ◽  
Xin Cheng ◽  
Li Shuai ◽  
...  

Chemical pretreatment followed by enzymatic hydrolysis has been regarded as a viable way to produce fermentable sugars. Phenylsulfonic acid (PSA) pretreatment could efficiently fractionate the non-cellulosic components (hemicelluloses and lignin) from bamboo and result in increased cellulose accessibility that was 10 times that of untreated bamboo. However, deposited lignin could trigger non-productive adsorption to enzymes, which therefore significantly decreased the enzymatic hydrolysis efficiency of PSA-pretreated bamboo substrates. Herein, poly(N-vinylcaprolactam) (PNVCL), a non-ionic surfactant, was developed as a novel additive for overcoming the non-productive adsorption of lignin during enzymatic hydrolysis. PNVCL was found to be not only more effective than those of commonly used lignosulfonate and polyvinyl alcohol for overcoming the negative effect of lignin, but also comparable to the robust Tween 20 and bovine serum albumin additives. A PNVCL loading at 1.2 g/L during enzymatic hydrolysis of PSA pretreated bamboo substrate could achieve an 80% cellulosic enzymatic conversion and meanwhile reduce the cellulase loading by three times as compared to that without additive. Mechanistic investigations indicated that PNVCL could block lignin residues through hydrophobic interactions and the resultant PNVCL coating resisted the adsorption of cellulase via electrostatic repulsion and/or hydration. This practical method can improve the lignocellulosic enzymatic hydrolysis efficiency and thereby increase the productivity and profitability of biorefinery.


2006 ◽  
Vol 93 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Shengdong Zhu ◽  
Yuanxin Wu ◽  
Ziniu Yu ◽  
Cunwen Wang ◽  
Faquan Yu ◽  
...  

Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Sign in / Sign up

Export Citation Format

Share Document