Scrap tires pyrolysis oil as a co-feeding stream on the catalytic cracking of vacuum gasoil under fluid catalytic cracking conditions

2020 ◽  
Vol 105 ◽  
pp. 18-26 ◽  
Author(s):  
Elena Rodríguez ◽  
Roberto Palos ◽  
Alazne Gutiérrez ◽  
José M. Arandes ◽  
Javier Bilbao
Author(s):  
José Ignacio Alvira ◽  
Idoia Hita ◽  
Elena Rodriguez ◽  
Jose M Arandes ◽  
Pedro Castaño

Associating the most influential parameters with the product distribution is of uttermost importance in complex catalytic processes such as fluid catalytic cracking (FCC). These correlations can lead to the information-driven catalyst screening, kinetic modeling and reactor design. In this work, a dataset of 104 uncorrelated experiments, with 64 variables, has been obtained in an FCC simulator using 6 types of feedstock (vacuum gasoil, polyethylene pyrolysis waxes, scrap tire pyrolysis oil, dissolved polyethylene and blends of the previous), 36 possible sets of conditions (varying contact time, temperature and catalyst/oil ratio) and 3 industrial catalysts. Principal component analysis (PCA) has been applied over the dataset, showing that the main components are associated with feed composition (27.41% variance); operational conditions (19.09%) and catalyst properties (12.72%). The variables of each component have been correlated with the indexes and yields of the products: conversion, octane number, aromatics, olefins (propylene) or coke, among others.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 243 ◽  
Author(s):  
José Alvira ◽  
Idoia Hita ◽  
Elena Rodríguez ◽  
José Arandes ◽  
Pedro Castaño

Establishing a reaction network is of uttermost importance in complex catalytic processes such as fluid catalytic cracking (FCC). This step is the seed for a faithful reactor modeling and the subsequent catalyst re-design, process optimization or prediction. In this work, a dataset of 104 uncorrelated experiments, with 64 variables, was obtained in an FCC simulator using six types of feedstock (vacuum gasoil, polyethylene pyrolysis waxes, scrap tire pyrolysis oil, dissolved polyethylene and blends of the previous), 36 possible sets of conditions (varying contact time, temperature and catalyst/oil ratio) and three industrial catalysts. Principal component analysis (PCA) was applied over the dataset, showing that the main components are associated with feed composition (27.41% variance), operational conditions (19.09%) and catalyst properties (12.72%). The variables of each component were correlated with the indexes and yields of the products: conversion, octane number, aromatics, olefins (propylene) or coke, among others. Then, a data-driven reaction network was proposed for the cracking of waste feeds based on the previously obtained correlations.


2016 ◽  
Vol 55 (7) ◽  
pp. 1872-1880 ◽  
Author(s):  
Álvaro Ibarra ◽  
Elena Rodríguez ◽  
Ulises Sedran ◽  
José M. Arandes ◽  
Javier Bilbao

2019 ◽  
Vol 58 (13) ◽  
pp. 5158-5167 ◽  
Author(s):  
Elena Rodríguez ◽  
Roberto Palos ◽  
Alazne Gutiérrez ◽  
José M. Arandes ◽  
Javier Bilbao

2019 ◽  
Vol 33 (4) ◽  
pp. 3133-3143 ◽  
Author(s):  
Elena Rodríguez ◽  
Alazne Gutiérrez ◽  
Roberto Palos ◽  
M. Josune Azkoiti ◽  
José M. Arandes ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 143
Author(s):  
Marco Buechele ◽  
Helene Lutz ◽  
Florian Knaus ◽  
Alexander Reichhold ◽  
Robbie Venderbosch ◽  
...  

Background: The Waste2Road project exploits new sustainable pathways to generate biogenic fuels from waste materials, deploying existing industrial scale processes. One such pathway is through pyrolysis of wood wastes. Methods: The hereby generated pyrolysis liquids were hydrogenated prior to co-feeding in a fluid catalytic cracking (FCC) pilot plant. So-called stabilized pyrolysis oil (SPO) underwent one mild hydrogenation step (max. 200 °C) whereas the stabilized and deoxygenated pyrolysis oil (SDPO) was produced in two steps, a mild one (maximum 250 °C) prior to a more severe process step (350 °C). These liquids were co-fed with vacuum gas oil (VGO) in an FCC pilot plant under varying riser temperatures (530 and 550 °C). The results of the produced hydrocarbon gases and gasoline were benchmarked to feeding pure VGO. Results: It was proven that co-feeding up to 10 wt% SPO and SDPO is feasible. However, further experiments are recommended for SPO due to operational instabilities originating from pipe clogging. SPO led to an increase in the hydrocarbon gas production from 45.0 to 46.3 wt% at 550 °C and no significant changes at 530 °C. SDPO led to a rise in gasoline yield at both riser temperatures. The highest amount of gasoline was produced when SDPO was co-fed at a 530 °C riser temperature, with values around 44.8 wt%. Co-feeding hydrogenated pyrolysis oils did not lead to a rise in sulfur content in the gasoline fractions. The highest values were around 18 ppm sulfur content. Instead, higher amounts of nitrogen were observed in the gasoline. Conclusions: SPO and SDPO proved to be valuable co-refining options which led to no significant decreases in product quality. Further experiments are encouraged to determine the maximum possible co-feeding rates. As a first step, 20-30 wt% for SPO are recommended, whereas for SDPO  100 wt% could be achievable.


Sign in / Sign up

Export Citation Format

Share Document