Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration

2004 ◽  
Vol 38 (14-15) ◽  
pp. 3205-3214 ◽  
Author(s):  
Shen-Yi Chen ◽  
Jih-Gaw Lin
Heliyon ◽  
2018 ◽  
Vol 4 (9) ◽  
pp. e00778 ◽  
Author(s):  
Xiaocheng Wei ◽  
Dongfang Liu ◽  
Lirui Liao ◽  
Zhendong Wang ◽  
Wenjiao Li ◽  
...  

2000 ◽  
Vol 41 (12) ◽  
pp. 263-270 ◽  
Author(s):  
S. Y. Chen ◽  
J. G. Lin

Bioleaching is one of the feasible methods for the treatment of sediments contaminated with heavy metals. Effects of solid content, substrate (sulfur) concentration and pH on the performance of bioleaching process were investigated in this study. It was found that rates of sediment acidification and metal solubilization decreased with increasing solid content. Besides, sulfur concentration greater than 5 g/l was found to be inhibitory to bacterial activity and metal solubilization from sediment. It was concluded that a substrate concentration of 5 g/l in reactor was the optimum concentration for bioleaching process. It was also observed that solubilization of heavy metal from the sediment was highly pH-dependent. For all values of solid content and sulfur concentration tested, the efficiency of metal solubilization from sediment followed the order Cu>Zn>Pb>Cr.


2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


1998 ◽  
Vol 37 (6-7) ◽  
pp. 387-394 ◽  
Author(s):  
H. Seidel ◽  
J. Ondruschka ◽  
P. Morgenstern ◽  
U. Stottmeister

The removal of heavy metals from contaminated river sediments was studied using suspension leaching under laboratory conditions and percolation leaching in a pilot plant. The leaching potential of indigenous sulfur-oxidizing bacteria was compared with acid treatment. Bioleaching with elemental sulfur as substrate was found to be better than treatment with sulfuric acid for the solubilization of all metals tested. The physical and chemical properties of the sediments used in this study did not affect leaching capacity under optimum conditions in the laboratory. Under the practical conditions in the pilot plant, the redox state of sludge had a considerable influence on leaching efficiency. In a deposited oxic sediment with good permeability, about 62% of the metals tested were removed by percolation leaching after 120 days. Zn, Cd, Ni, Co and Mn were sufficiently leached to enable treated sediments to be reused as soil. In a freshly dredged anoxic sediment, only a total of 9 % of metals were removed. The results indicate that freshly dredged sediments need to undergo pretreatment before percolation leaching to improve mass transfer and to activate the leaching active bacteria.


2003 ◽  
Vol 48 (8) ◽  
pp. 151-158 ◽  
Author(s):  
S.Y. Chen ◽  
J.G. Lin ◽  
C.Y. Lee

Bioleaching is one of the promising procedures for removal of heavy metals from contaminated sediments. The advantages of this biotechnology are that it is easy, efficient, less costly and friendly to the environment. However, the principal disadvantage of this process is its slow kinetics in metal solubilization, which may limit practical application of the bioleaching process. In order to enhance the rate and efficiency of metal solubilization, the ferric ion was used as a catalytic agent in the bioleaching process. It was found that the sediment pH apparently decreased in the bioleaching after addition of ferric ion. The metal solubilization increased quickly after the addition of ferric ion. The rate of metal solubilization was enhanced by the addition of ferric ion, especially for Cr and Pb. An increase in the amount of ferric ion added increased the final efficiency of metal solubilization. The highest final efficiency of metal solubilization was obtained in the bioleaching with 1 g/L of ferric ion. Besides, the growth of sulfur-oxidizing bacteria was not affected by addition of ferric ion in the bioleaching. It was concluded that the kinetics of metal solubilization were enhanced by addition of ferric ion in the bioleaching process.


Sign in / Sign up

Export Citation Format

Share Document