Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains

2007 ◽  
Vol 41 (13) ◽  
pp. 2865-2870 ◽  
Author(s):  
M.V. López-Ramón ◽  
M.A. Fontecha-Cámara ◽  
M.A. Álvarez-Merino ◽  
C. Moreno-Castilla
2006 ◽  
Vol 252 (17) ◽  
pp. 6058-6063 ◽  
Author(s):  
E. Sabio ◽  
F. Zamora ◽  
J.F. González ◽  
C.M. González García ◽  
S. Román ◽  
...  

Author(s):  
Eldar P. Magomedbekov ◽  
Aleksei O. Merkushkin ◽  
Alexander V. Obruchikov ◽  
Veronika S. Pokalchuk

1994 ◽  
Vol 72 (01) ◽  
pp. 140-145 ◽  
Author(s):  
Valeri Kolpakov ◽  
Maria Cristina D'Adamo ◽  
Lorena Salvatore ◽  
Concetta Amore ◽  
Alexander Mironov ◽  
...  

SummaryActivated neutrophils may promote thrombus formation by releasing proteases which may activate platelets, impair the fibrinolytic balance and injure the endothelial monolayer.We have investigated the morphological correlates of damage induced by activated neutrophils on the vascular wall, in particular the vascular injury induced by released cathepsin G in both static and dynamic conditions.Human umbilical vein endothelial cells were studied both in a cell culture system and in a model of perfused umbilical veins. At scanning electron microscopy, progressive alterations of the cell monolayer resulted in cell contraction, disruption of the intercellular contacts, formation of gaps and cell detachment.Contraction was associated with shape change of the endothelial cells, that appeared star-like, while the underlying extracellular matrix, a potentially thrombogenic surface, was exposed. Comparable cellular response was observed in an “in vivo” model of perfused rat arterial segment. Interestingly, cathepsin G was active at lower concentrations in perfused vessels than in culture systems. Restoration of blood flow in the arterial segment previously damaged by cathepsin G caused adhesion and spreading of platelets on the surface of the exposed extracellular matrix. The subsequent deposition of a fibrin network among adherent platelets, could be at least partially ascribed to the inhibition by cathepsin G of the vascular fibrinolytic potential.This study supports the suggestion that the release of cathepsin G by activated neutrophils, f.i. during inflammation, may contribute to thrombus formation by inducing extensive vascular damage.


2012 ◽  
Vol 2 (6) ◽  
pp. 60-63
Author(s):  
R. P. Suresh Jeyakumar ◽  
◽  
Dr. V. Chandrasekaran Dr. V. Chandrasekaran

2005 ◽  
Vol 30 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Szymon Los ◽  
Philippe Azais ◽  
Roland JM Pellenq ◽  
Yannick Breton ◽  
Olivier Isnard ◽  
...  

2017 ◽  
pp. 96-103 ◽  
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.


2011 ◽  
Vol 26 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Fei XIE ◽  
Yan Li WANG ◽  
Liang ZHAN ◽  
Ming GE ◽  
Xiao-Yi LIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document