Use of activated carbon to remove undesirable residual amylase from refinery streams

2017 ◽  
pp. 96-103 ◽  
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.

2017 ◽  
pp. 96-103
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.


2013 ◽  
Vol 634-638 ◽  
pp. 1026-1030 ◽  
Author(s):  
Huan Chun Wang ◽  
Xiao Li Gou ◽  
Xiao Meng Lv

Two kinds of modified activated carbons were prepared by dipping with Zn(NO3)2 solution and by reducing in the atmosphere of N2 at high temperature respectively, which were characterized by FTIR,DSC,SEM and EDS. The surface structure was strongly changed in the process, along with the changes of chemical functional groups. The results of adsorption experiments revealed that the adsorbent capacities of UDMH gas at room temperature were enhanced obviously by modification compared with the raw activated carbon, especially dipped by transition metal solution. The mechanism probably involved was also discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64704-64710 ◽  
Author(s):  
Guofu Ma ◽  
Dongyang Guo ◽  
Kanjun Sun ◽  
Hui Peng ◽  
Qian Yang ◽  
...  

Cotton-based porous activated carbons (CACs) are prepared through a simple chemical activation method using cotton fiber as carbon source and ZnCl2 as activating agent.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105540-105549 ◽  
Author(s):  
Changshui Wang ◽  
Tingzhi Liu

Bark phenolic compounds have been used to partially substitute petroleum-based phenol in a resin synthesis due to their similarity. Activated carbons derived from the liquefied bark-phenol formaldehyde resins exhibit excellent capacitance.


Author(s):  
Hemavathy Palanisami ◽  
Mohamad Rafiuddin Mohd Azmi ◽  
Muhammad Abbas Ahmad Zaini ◽  
Zainul Akmar Zakaria ◽  
Muhd Nazrul Hisham Zainal Alam ◽  
...  

Abstract This work was aimed to evaluate the adsorptive properties of activated carbons from coffee residue for phenol removal. The coffee residue was activated using H3PO4 and KOH, and the resultant activated carbons were characterized for surface area and functional groups. The values of surface area were recorded as 1,030 m2/g and 399 m2/g for H3PO4- and KOH-activated carbons, respectively. The maximum capacity for phenol removal is comparable for both activated carbons at 43 mg/g. The pores might be inaccessible due to electrostatic repulsion by surface functional groups and hydroxyl anions. The second stage in a two-stage adsorber design is necessary to accomplish the process with high performance and minimum dosage of activated carbon. Coffee residue is a promising activated carbon precursor for phenol removal.


2019 ◽  
Vol 60 (10) ◽  
pp. 99-109
Author(s):  
Kim Long Vu ◽  
◽  
Vitaly N. Klushin ◽  
Alexey V. Nistratov ◽  
Hoang Thi Tho ◽  
...  

The possibility of processing wastes based on organoplastics generated at aviation enterprises into activated carbons by chemical activation using potassium hydroxide has been investigated. Powdered and granular activated carbons with a porous structure, characterized by the predominance of micropores or mesopores, are obtained that are superior in many respects to both adsorbents based on organoplastics and most industrial active carbons. The specific surface area of micropores of the obtained granular activated carbons is 1716 m2/g, the absorption capacity is 365 mg/g for methylene blue and 1180 mg/g for iodine. The obtained granular activated carbons are characterized by a stable adsorption value of n-butanol (about 400 mg/g) during three successive adsorption-regeneration cycles. Desorption at 120±5 °C provides an almost complete restoration of the activity of this absorber, fundamentally allowing its multiple use in this technology. It is shown in the work that granular activated carbons of very high quality can be obtained by chemical activation with potassium hydroxide based on organoplastics wastes, the only drawback of which is, in essence, the relatively low (at 60%) abrasion resistance. The possibility of improving the quality properties of granular activated carbons by adding a small amount of carbon fiber (1% of the mass) as a reinforcing component in the process of granulation to raw paste was investigated. The specified method can significantly increase the strength of the granules in compression (about 3 times), while the adsorption properties of activated carbon are practically unchanged. The properties described above allow us to conclude that the obtained granular activated carbon is effective and highly competitive.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5180
Author(s):  
Iwona Skoczko ◽  
Remigiusz Guminski

Activated carbons (ACs) are processed carbon-rich materials with a highly developed inner surface and significant porosity used for different media treatment in municipal and industrial plants. Activated carbon may be manufactured as powdered activated carbon (PAC), gritty activated carbon (in a form of raw angels grains) or granulated activated carbon (GAC). The production of the GAC is based on carbonaceous raw materials and various types of binders. The carbon mass is mixed with the binder and formed in cylindrical granules. The binder’s recognition is in a scientific literature side-topic and still needs wider examination. For many years GAC production have been concentrated on the possibility of using sodium carboxymethylcellulose (SCMC). Therefore, the aim of the research was to develop a new binder, in the available technology of granulated activated carbon production. Such binders were tested such as: tall oil (TO), sugar beet molasses (SBM), sodium carboxymethylcellulose (SCMC), SCMC using a verified technological process and SCMC with the addition of gas tar (GT). The conducted research shows that all the quality requirements were met by activated carbons with SBM as a binder. Additionally they showed very high adsorption properties. The manufacturing process was shorter in comparison to other tested binders and more efficient.


2008 ◽  
Vol 587-588 ◽  
pp. 753-757 ◽  
Author(s):  
Isabel P.P. Cansado ◽  
Manuela M.L. Ribeiro Carrott ◽  
Peter J.M. Carrott ◽  
Paulo A.M. Mourão

Activated carbons (AC) were prepared from waste granulated Polyethyleneterephthalate (PET) by chemical activation with phosphoric acid, sodium hydroxide and potassium hydroxide. All AC were characterised by N2 adsorption at 77 K, and those prepared with H3PO4 had a narrow pore size around 0.8 nm, those prepared with NaOH had a larger pore size higher than 1.52 nm and those prepared with KOH presented a pore size varying between 0.66 and 1.58 nm. The results suggest that H3PO4 and NaOH are not the most suitable activating agents for preparing AC with a high pore volume from waste PET. The AC produced with KOH presented a very high porosity, which passed through a maximum of 0.75 cm3g-1, due to an enlargement of the small micropores with an increase of the carbonisation temperature.


RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 22892-22899 ◽  
Author(s):  
Qiang Liu ◽  
Ming Ke ◽  
Feng Liu ◽  
Pei Yu ◽  
Haiqiang Hu ◽  
...  

Nitrogen-rich coconut shell activated carbons were prepared with high CH3SH capacity and easy regeneration. The catalytic activity is closely related to the contents of pyridinic nitrogen and quaternary nitrogen.


RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19098-19105 ◽  
Author(s):  
Yue Li ◽  
Tong-Xin Shang ◽  
Jian-Min Gao ◽  
Xiao-Juan Jin

Nitrogen-doped activated carbon/reduced graphene oxide composites are prepared by pre-carbonization of the precursors (mixture of graphene oxide and nitrogen-doped activated carbons) and KOH activation of the pyrolysis products.


Sign in / Sign up

Export Citation Format

Share Document