An improved infectivity assay combining cell culture with real-time PCR for rapid quantification of human adenoviruses 41 and semi-quantification of human adenovirus in sewage

2013 ◽  
Vol 47 (9) ◽  
pp. 3183-3191 ◽  
Author(s):  
Roberto A. Rodríguez ◽  
Patsy M. Polston ◽  
Ming Jing Wu ◽  
Jianyong Wu ◽  
Mark D. Sobsey
2007 ◽  
Vol 191 (1-4) ◽  
pp. 83-93 ◽  
Author(s):  
M. Muscillo ◽  
M. Pourshaban ◽  
M. Iaconelli ◽  
S. Fontana ◽  
A. Di Grazia ◽  
...  

2010 ◽  
Vol 76 (24) ◽  
pp. 8019-8025 ◽  
Author(s):  
Leslie Ogorzaly ◽  
Isabelle Bertrand ◽  
Myriam Paris ◽  
Armand Maul ◽  
Christophe Gantzer

ABSTRACT Detection of specific genetic markers can rapidly identify the presence of enteric viruses in groundwater. However, comparison of stability characteristics between genetic and infectivity markers is necessary to better interpret molecular data. Human adenovirus serotype 2 (HAdV2), in conjunction with MS2 phages or GA phages, was spiked into raw groundwater microcosms. Viral stability was periodically assessed by both infectivity and real-time PCR methods. The results of this yearlong study suggest that adenoviruses have the most stable persistence profile and an ability to survive for a long time in groundwater. According to a linear regression model, infectivity reductions of HAdV2 ranged from 0.0076 log10/day (4°C) to 0.0279 log10/day (20°C) and were significantly lower than those observed for phages. No adenoviral genome degradation was observed at 4°C, and the reduction was estimated at 0.0036 log10/day at 20°C. Occurrence study showed that DNA of human adenoviruses could be observed in groundwater from a confined aquifer (7 of the 60 samples were positive by real-time PCR), while no fecal indicators were detected. In agreement with the persistence of genetic markers, the presence of adenoviral DNA in groundwater may be misleading in term of health risk, especially in the absence of information on the infective status.


2017 ◽  
Vol 16 (34) ◽  
pp. 1791-1799 ◽  
Author(s):  
Meryem Idrissi Azzouzi Lalla ◽  
Senouci Samira ◽  
El Qazoui Maria ◽  
Oumzil Hicham ◽  
Naciri Mariam
Keyword(s):  

2020 ◽  
Author(s):  
Guilan Lu ◽  
Xiaomin Peng ◽  
Renqing Li ◽  
Yimeng Liu ◽  
Zhanguo Wu ◽  
...  

Abstract Background: Twelve students experienced symptoms of acute respiratory infection (ARI) at a training base in Beijing from August 26 to August 30, 2015. We investigated the cause of this ARI outbreak. Methods: In partnership with the local center for disease control, we collected a total of twelve pharyngeal swab specimens as well as demographic information for the affected patients. We used multiplex real-time PCR to screen for sixteen common respiratory viruses in these samples. To isolate HAdV, we inoculated Hep-2 cells with the human adenovirus (HAdV)-positive samples and then carried out sequencing and phylogenetic analysis of the hexon, fiber, and penton genes of the isolated adenoviruses. In addition, we analyzed the entire genome of one strain isolated from the index case to identify single-nucleotide substitutions. Results: We identified ten HAdV-positive students using multiplex real-time PCR. None of the students were co-infected with other viruses. We successfully isolated seven HAdV strains from the pharyngeal swab specimens. The coding sequences of the hexon, fiber, and penton genes of these seven HAdV strains were identical, suggesting that they represented seven strains from a single virus clone. One HAdV isolate obtained from the index case, BJDX-01-2015, was selected for whole genome analysis. From this isolate, we obtained a 34,774-nucleotide sequence. The genome of BJDX-01-2015 clustered with HAdV-B55 in phylogenetic analyses and had 99.97% identity with human adenovirus 55 isolate HAdV-B/CHN/BJ01/2011/55 (GenBank accession no. JX491639). Conclusions: We identified HAdV-B55 as the strain associated with the August 2015 ARI outbreak at a training base in Beijing. This was the first reported outbreak in Beijing due to HAdV-B55. Continuous surveillance of respiratory adenoviruses is urgently needed to understand the epidemiological and evolutionary features of HAdV-B55, and an epidemiological modeling approach may provide further insights into this emerging public health threat. Furthermore, the clinical laboratory data from this outbreak provides important reference for the clinical diagnosis and may ultimately aid in informing the development of strategies to control and prevent respiratory tract infections caused by HAdV-B55. Keywords: Outbreak, Human adenovirus, Acute Respiratory Infection, Phylogenetic Analysis, Whole Genome Sequencing


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Christian Shema Mugisha ◽  
Hung R. Vuong ◽  
Maritza Puray-Chavez ◽  
Adam L. Bailey ◽  
Julie M. Fox ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions within just a few months, causing severe respiratory disease and mortality. Assays to monitor SARS-CoV-2 growth in vitro depend on time-consuming and costly RNA extraction steps, hampering progress in basic research and drug development efforts. Here, we developed a simplified quantitative real-time PCR assay that bypasses viral RNA extraction steps and can monitor SARS-CoV-2 growth from a small amount of cell culture supernatants. In addition, we show that this approach is easily adaptable to numerous other RNA and DNA viruses. Using this assay, we screened the activities of a number of compounds that were predicted to alter SARS-CoV-2 entry and replication as well as HIV-1-specific drugs in a proof-of-concept study. We found that E64D (inhibitor of endosomal proteases cathepsin B and L) and apilimod (endosomal trafficking inhibitor) potently decreased the amount of SARS-CoV-2 RNA in cell culture supernatants with minimal cytotoxicity. Surprisingly, we found that the macropinocytosis inhibitor ethylisopropylamiloride (EIPA) similarly decreased SARS-CoV-2 RNA levels in supernatants, suggesting that entry may additionally be mediated by an alternative pathway. HIV-1-specific inhibitors nevirapine (a nonnucleoside reverse transcriptase inhibitor [NNRTI]), amprenavir (a protease inhibitor), and allosteric integrase inhibitor 2 (ALLINI-2) modestly inhibited SARS-CoV-2 replication, albeit the 50% inhibitory concentration (IC50) values were much higher than that required for HIV-1. Taking the data together, this simplified assay will expedite basic SARS-CoV-2 research, be amenable to mid-throughput screening assays (i.e., drug, CRISPR, small interfering RNA [siRNA], etc.), and be applicable to a broad number of RNA and DNA viruses. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, is continuing to cause immense respiratory disease and social and economic disruptions. Conventional assays that monitor SARS-CoV-2 growth in cell culture rely on costly and time-consuming RNA extraction procedures, hampering progress in basic SARS-CoV-2 research and development of effective therapeutics. Here, we developed a simple quantitative real-time PCR assay to monitor SARS-CoV-2 growth in cell culture supernatants that does not necessitate RNA extraction and that is as accurate and sensitive as existing methods. In a proof-of-concept screen, we found that E64D, apilimod, EIPA, and remdesivir can substantially impede SARS-Cov-2 replication, providing novel insight into viral entry and replication mechanisms. In addition, we show that this approach is easily adaptable to numerous other RNA and DNA viruses. This simplified assay will undoubtedly expedite basic SARS-CoV-2 and virology research and be amenable to use in drug screening platforms to identify therapeutics against SARS-CoV-2.


2008 ◽  
Vol 46 (12) ◽  
pp. 3997-4003 ◽  
Author(s):  
M. Damen ◽  
R. Minnaar ◽  
P. Glasius ◽  
A. van der Ham ◽  
G. Koen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document