Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water

2015 ◽  
Vol 68 ◽  
pp. 432-443 ◽  
Author(s):  
Julie A. Korak ◽  
Eric C. Wert ◽  
Fernando L. Rosario-Ortiz
Author(s):  
Davide Vione ◽  
Claudio Minero ◽  
Luca Carena

Fluorescence spectroscopy is one of the most useful techniques that are currently available for the characterisation of organic matter in natural water samples, because it combines easy availability of instrumentation,...


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


2021 ◽  
Vol 211 ◽  
pp. 105001
Author(s):  
Amanda M. Tadini ◽  
Alfredo A.P. Xavier ◽  
Débora M.B.P. Milori ◽  
Patrícia P.A. Oliveira ◽  
José R. Pezzopane ◽  
...  

Author(s):  
Suna Ozden Celik ◽  
Nese Tufekci ◽  
Ismail Koyuncu

Abstract Lab-scale continuous operation of self forming MF and UF dynamic membranes were investigated simultaneously by applying iron oxide as an alternative treatment option in those waters having natural organic matter (NOM), iron and manganese. Both dynamic membranes gave high removal rates and effluent concentrations of pollutants were below the limit values in synthetic water. 60–62% of DOC and 75–78% of UV254 were removed in low DOC synthetic water (LS) by MF and UF dynamic membranes, respectively. Although only 42–49% of DOC and 48–53% of UV254 could be removed by MF and UF dynamic membranes, remarkable effect on fouling alleviation was observed in high DOC synthetic water (HS). Iron oxide did not enhance the removal of organic matter in low DOC natural water (LN) as much as it did in synthetic water. Iron oxide led to the removal of high molecular weight organics, thus reversible fouling reduced almost 2 orders of magnitude through both types of dynamic membranes in high DOC natural water (HN). Reversible and ireversibe resistances were reduced by iron oxide to some extent in LN. Nevertheless the effect of iron oxide on fouling alleviation was much higher in HN than LN.


Sign in / Sign up

Export Citation Format

Share Document