Transformation and products of captopril with humic constituents during laccase-catalyzed oxidation: Role of reactive intermediates

2016 ◽  
Vol 106 ◽  
pp. 488-495 ◽  
Author(s):  
Penghui Du ◽  
He Zhao ◽  
Chenming Liu ◽  
Qingguo Huang ◽  
Hongbin Cao
Author(s):  
Nikolett Bodnár ◽  
Katalin Várnagy ◽  
Lajos Nagy ◽  
Gizella Csire ◽  
Csilla Kállay

2007 ◽  
Vol 79 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Angelo Fontana ◽  
Giuliana d'Ippolito ◽  
Adele Cutignano ◽  
Antonio Miralto ◽  
Adrianna Ianora ◽  
...  

Oxylipins are important signal transduction molecules widely distributed in animals and plants where they regulate a variety of events associated with physiological and pathological processes. The family embraces several different metabolites that share a common origin from the oxygenase-catalyzed oxidation of polyunsaturated fatty acids. The biological role of these compounds has been especially studied in mammalians and higher plants, although a varied and very high concentration of these products has also been reported from marine macroalgae. This article gives a summary of our results concerning the oxylipin chemistry of marine diatoms, a major class of planktonic microalgae that discourage predation from their natural grazers, zooplanktonic copepods, using chemical warfare. These apparently harmless microscopic cells produce a plethora of oxylipins, including short-chain unsaturated aldehydes, hydroxyl-, keto-, and epoxyhydroxy fatty acid derivatives, that induce reproductive failure in copepods through abortions, congenital malformations, and reduced larval growth. The biochemical process involved in the production of these compounds shows a simple regulation based on decompartmentation and mixing of preexisting enzymes and requires hydrolysis of chloroplast-derived glycolipids to feed the downstream activities of C16 and C20 lipoxygenases.


1989 ◽  
Vol 149 ◽  
Author(s):  
S. Veprek ◽  
M. Heintze ◽  
R. Bayer ◽  
N. Jurčik-Rajman

ABSTRACTWe present new results of kinetic studies of the deposition of high quality a-Si:H which strongly support the reaction mechanism suggested in our earlier papers: 1. SiH4 → SiH2; 2. SiH2 + SiS4 → Si2H6 (SiH2 + Si2H6 → Si3H6); 3. Si2H6 → 2a-Si:H (Si3H8 → 3a-Si:H). The “SiH3 mechanism”, as promoted by several workers, is in contradiction with these experimental facts.The di- and trisilane, which have a much higher reactive sticking coefficient than monosilane, play the role of reactive intermediates which facilitate the heterogeneous decomposition of silicon carrying species at the surface of the growing film. The values of the reactive sticking coefficient of Si2H6 and Si3H8 depend on the surface coverage by chemisorbed hydrogen; they increase with decreasing surface coverage. Under the conditions of the growth of high quality a-Si:H films the reactive sticking coefficient of disilane amounts to 10−4 to 10−2 which is in a good agreement with recent data of other authors.The rate determining step of the growth of high quality a-Si:H films is the desorption of hydrogen from the surface of the growing film. This can be strongly enhanced by ion bombardment at impact energy of <100 eV. In this way, homogeneous, good quality films were deposited at rates up to 1800 Angströms/min, and there is a well justified hope that this rate can be further increased.


1997 ◽  
Vol 134 (1-2) ◽  
pp. 284
Author(s):  
Demokritos C. Tsoukatos ◽  
Muriel Arborati ◽  
Theodoros Liapikos ◽  
Keith L. Clay ◽  
Robert C. Murphy ◽  
...  

Lupus ◽  
2011 ◽  
Vol 20 (13) ◽  
pp. 1421-1425 ◽  
Author(s):  
U Minhas ◽  
P Das ◽  
A Bhatnagar

Pristane-induced lupus in Balb/c mice represents an environmentally induced lupus model which is widely used for unravelling the mystery of the pathogenesis of the disease. An intraperitoneal innate immune reaction to pristane is primarily accountable for the development of the systemic lupus erythematosus-like disease in the model. In this study, reactive oxygen species (ROS) and nitric oxide (NO) levels were assessed (as a measure of chronic inflammation) in the peritoneum of the Balb/c model of SLE-like disease 6 months after a single intraperitoneal injection of pristane. Levels of ROS in peritoneal macrophages were significantly enhanced (mean fluorescence value ± SD: 648 ± 100.9) in pristane-treated mice (PT) as compared with control mice (mean fluorescence value ± SD: 79 ± 7.8) treated with phosphate buffer saline (PBST). An immunofluorescence study reveal the localization of ROS within nuclei, suggesting oxidative damage. Similarly, levels of NO were also markedly raised in PT mice (34.71 µmol/l ± 8.48) as compared with PBST mice (1.36 nmol/l ± 0.14). These new findings lead to speculation about the role of reactive intermediates in the development of disease. This study proposes that the sustained production of reactive intermediates during chronic intraperitoneal inflammation might reduce antioxidant defences and lead to a condition of oxidative stress, which might further be responsible for this autoimmune condition.


Sign in / Sign up

Export Citation Format

Share Document