Initial fate assessment of teratogenic drug trimipramine and its photo-transformation products – Role of pH, concentration and temperature

2017 ◽  
Vol 108 ◽  
pp. 197-211 ◽  
Author(s):  
Nareman D.H. Khaleel ◽  
Waleed M.M. Mahmoud ◽  
Oliver Olsson ◽  
Klaus Kümmerer
Clay Minerals ◽  
1983 ◽  
Vol 18 (3) ◽  
pp. 253-265 ◽  
Author(s):  
P. J. Isaacson ◽  
B. L. Sawhney

AbstractThe sorption and transformation of phenol, 2-methylphenol, 3-methylphenol, 2,6-dimethylphenol, 3,5-dimethylphenol, and 2,4,6-trimethylphenol, by homoionic Na-, H-, Ca-, Cu-, Al-, and Fe(III)-montmorillonite from both vapour and aqueous phases were examined by IR spectroscopy. All the phenols were sorbed by the clays but were modified to different degrees depending on the exchangeable cations and on the amount and type of alkyl substitution of the phenols. Sorption of 2,6-dimethylphenol from aqueous solution was irreversible, and the extent of sorption followed the order Fe- > Al- > Cu- > Ca-clay. Both transition and non-transition metal cations were effective in transforming the phenol sorbates and heating the clay/phenol complexes further enhanced transformation. The results are discussed in terms of the nature of the transformation products and the likely role of radical reactions in their formation.


2009 ◽  
Vol 9 (4) ◽  
pp. 17665-17704 ◽  
Author(s):  
S. Samy ◽  
B. Zielinska

Abstract. Secondary organic aerosol (SOA) production was observed at significant levels in a series of modern diesel exhaust (DE) aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE). The greatest production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. The analysis for a limited number (54) of polar organic compounds (POC) was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA% yield (in relation to toluene) of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3071
Author(s):  
Ermelinda Falletta ◽  
Anna Bruni ◽  
Marta Sartirana ◽  
Daria C. Boffito ◽  
Giuseppina Cerrato ◽  
...  

In the present study, the development of innovative polyurethane-polyaniline/TiO2 modified floating materials applied in the sorption and photodegradation of rhodamine B from water matrix under solar light irradiation is reported. All the materials were fabricated with inexpensive and easy approaches and were properly characterized. The effect of the kind of polyaniline (PANI) dopant on the materials’ behavior was investigated, as well as the role of the conducting polymer in the pollutant abatement on the basis of its physico-chemical characteristics. Rhodamine B is removed by adsorption and/or photodegradation processes depending on the type of doping agent used for PANI protonation. The best materials were subjected to recycle tests in order to demonstrate their stability under the reaction conditions. The main transformation products formed during the photodegradation process were identified by ultraperformance liquid chromatography-mass spectrometry (UPLC/MS). The results demonstrated that photoactive floating PANI/TiO2 composites are useful alternatives to common powder photocatalysts for the degradation of cationic dyes.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Khadega A. Almaqdi ◽  
Rana Morsi ◽  
Bahia Alhayuti ◽  
Farah Alharthi ◽  
S. Salman Ashraf

Abstract Background The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Use of peroxidases has recently been recognized as a novel remediation approach that may have potential advantages over conventional degradation techniques. However, testing the abilities of different peroxidases to degrade diverse emerging pollutants is tedious and cumbersome. Results In the present study, we present a rapid and robust approach to easily test the degradability of 21 different emerging pollutants by five different peroxidases (soybean peroxidase, chloroperoxidase, lactoperoxidase, manganese peroxidase, and horseradish peroxidase) using an LC-MSMS approach. Furthermore, this approach was also used to examine the role of a redox mediator in these enzymatic degradation assays. Our results show that some of the organic pollutants can be easily degraded by all five of the peroxidases tested, whereas others are only degraded by a specific peroxidase (or when a redox mediator was present) and there are some that are completely resistant to degradation by any of the peroxidases tested (even in the presence of a redox mediator). The degradation of furosemide and trimethoprim by soybean peroxidase and chloroperoxidase, respectively, was investigated in detail by examining the transformation products generated during their degradation. Some of the products generated during enzymatic breakdown of these pollutants have been previously reported by others, however, we report many new transformation products. Conclusions LC-MSMS approaches, like the one described here, can be used to rapidly evaluate the potential of different peroxidases (and redox requirements) to be used as bioremediation agents. Our preliminary result shows peroxidases hold tremendous potential for being used in a final wastewater treatment step.


2010 ◽  
Vol 10 (2) ◽  
pp. 609-625 ◽  
Author(s):  
S. Samy ◽  
B. Zielinska

Abstract. Secondary organic aerosol (SOA) production was observed at significant levels in a series of modern diesel exhaust (DE) aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE). The greatest production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. The analysis for a limited number (54) of polar organic compounds (POC) was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in relation to toluene) of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.


2020 ◽  
Vol 250 ◽  
pp. 117269 ◽  
Author(s):  
Michael M. Sablas ◽  
Mark Daniel G. de Luna ◽  
Sergi Garcia-Segura ◽  
Chiu-Wen Chen ◽  
Chih-Feng Chen ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 589
Author(s):  
Valeria Consoli ◽  
Valeria Sorrenti ◽  
Salvo Grosso ◽  
Luca Vanella

Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.


Sign in / Sign up

Export Citation Format

Share Document