Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada

2018 ◽  
Vol 128 ◽  
pp. 129-137 ◽  
Author(s):  
Rongfu Huang ◽  
Yuan Chen ◽  
Mohamed N.A. Meshref ◽  
Pamela Chelme-Ayala ◽  
Shimiao Dong ◽  
...  
Chemosphere ◽  
2017 ◽  
Vol 187 ◽  
pp. 376-384 ◽  
Author(s):  
Sarah A. Hughes ◽  
Rongfu Huang ◽  
Ashley Mahaffey ◽  
Pamela Chelme-Ayala ◽  
Nikolaus Klamerth ◽  
...  

Chemosphere ◽  
2016 ◽  
Vol 165 ◽  
pp. 10-17 ◽  
Author(s):  
Tim Leshuk ◽  
Diogo de Oliveira Livera ◽  
Kerry M. Peru ◽  
John V. Headley ◽  
Sucharita Vijayaraghavan ◽  
...  

2021 ◽  
pp. 100092
Author(s):  
Kate I. Rundle ◽  
Mahmoud S. Sharaf ◽  
Don Stevens ◽  
Collins Kamunde ◽  
Michael R. Heuvel

2016 ◽  
Vol 62 (7) ◽  
pp. 543-549 ◽  
Author(s):  
Martin Beaudoin-Nadeau ◽  
André Gagné ◽  
Cyntia Bissonnette ◽  
Pier-Anne Bélanger ◽  
J. André Fortin ◽  
...  

Canadian oil sands tailings are predominately sodic residues contaminated by hydrocarbons such as naphthenic acids. These conditions are harsh for plant development. In this study, we evaluated the effect of inoculating roots of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa with ectomycorrhizal fungi in the presence of tailings compounds. Seedlings were inoculated with 7 different strains of Paxillus involutus and Alpova diplophloeus and were grown under different treatments of NaCl, Na2SO4, and naphthenic acids in a growth chamber. Afterwards, seedling survival, height, dry biomass, leaf necrosis, and root mycorrhization rate were measured. Paxillus involutus Mai was the most successful strain in enhancing alder survival, health, and growth. Seedlings inoculated with this strain displayed a 25% increase in survival rate, 2-fold greater biomass, and 2-fold less leaf necrosis compared with controls. Contrary to our expectations, A. diplophloeus was not as effective as P. involutus in improving seedling fitness, likely because it did not form ectomycorrhizae on roots of either alder species. High intraspecific variation characterized strains of P. involutus in their ability to stimulate alder height and growth and to minimize leaf necrosis. We conclude that in vivo selection under bipartite symbiotic conditions is essential to select effective strains that will be of use for the revegetation and reclamation of derelict lands.


1925 ◽  
Vol G-25 (01) ◽  
pp. 183-195 ◽  
Author(s):  
C.V. Millikan
Keyword(s):  

Water ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 202 ◽  
Author(s):  
Tim Leshuk ◽  
Harish Krishnakumar ◽  
Diogo de Oliveira Livera ◽  
Frank Gu

2015 ◽  
Vol 1754 ◽  
pp. 69-74
Author(s):  
Ravi Gaikwad ◽  
Tinu Abraham ◽  
Aharnish Hande ◽  
Fatemeh Bakhtiari ◽  
Siddhartha Das ◽  
...  

ABSTRACTAtomic force microscopy is employed to study the structural changes in the morphology and physical characteristics of asphaltene aggregates as a function of temperature. The exotic fractal structure obtained by evaporation-driven asphaltene aggregates shows an interesting dynamics for a large range of temperatures from 25°C to 80°C. The changes in the topography, surface potential and adhesion are unnoticeable until 70°C. However, a significant change in the dynamics and material properties is displayed in the range of 70°C - 80°C, during which the aspahltene aggregates acquire ‘liquid-like’ mobility and fuse together. This behaviour is attributed to the transition from the pure amorphous phase to a crystalline liquid phase which occurs at approximately 70°C as shown by using Differential Scanning Calorimetry (DSC). Additionally, the charged nature of asphaltenes and bitumen is also explored using kelvin probe microscopy. Such observations can lead to the development of a rational approach to the fundamental understanding of asphaltene aggregation dynamics and may help in devising novel techniques for the handling and separation of asphaltene aggregates using dielectrophoretic methods.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A493-A493
Author(s):  
Laiba Jamshed ◽  
Genevieve A Perono ◽  
Shanza Jamshed ◽  
Kim Ann Cheung ◽  
Philippe J Thomas ◽  
...  

Abstract Introduction: Serotonin produced in the periphery has been shown to affect glucose and lipid homeostasis. The availability of the amino acid tryptophan, the precursor of serotonin, affects serotonin availability. In addition, the metabolism of tryptophan via the kynurenine pathway produces physiologically active metabolites which have been shown to be altered under conditions of increased adiposity and dysglycemia. There is now evidence demonstrating some environmental xenobiotics, known to affect glucose and lipid homeostasis, can also alter serotonin production and key components of the kynurenine pathway. Recent evidence suggests that exposure to compounds present in petroleum and wastewaters from oil and gas extraction sites can impact endocrine signaling and result in aberrant lipid accumulation and altered glycemic control. However, whether any of these changes can be causally ascribed to altered serotonin synthesis/signaling or tryptophan metabolism remains unknown. The goal of this study was to determine the effects of exposure to naphthenic acid (NA), a key toxicant found in wastewater from bitumen (thick crude oil present in oil sands deposits) extraction on the enzymes involved in tryptophan metabolism and serotonin production. Methods: McA-RH7777 rat hepatoma cells, were exposed to a technical NA mixture for 48 hours at concentrations within the reported range of NA found in wastewaters from oil extraction. We assessed mRNA expression for key rate-limiting enzymes involved in tryptophan metabolism that lead to either serotonin [Tph1] and/or kynurenine [Ido2 and Tdo2] production, as well as downstream enzymes in the kynurenine pathway [Afmid, Kyat1, Aadat, Kyat3, Kmo, Haao, Acmsd, Qprt]. We also examined the effects of NA on prostaglandin synthesis [Ptgs1, Ptgs2, Ptges] and signalling [Ptger2, Ptger4] as prostaglandins have been shown to be induced by serotonin and are linked to hepatic fat accumulation. Results: NA treatment significantly increased Tph1 and Ido2 expression; this occurred in association with a significant increase in the expression of the inducible prostaglandin synthase Ptgs2 (COX-2), prostaglandin E synthase Ptges, and prostaglandin receptors Ptger2 and Ptger4. Acmsd was the only downstream enzyme in the kynurenine pathway that was significantly altered by NA treatment. Conclusion: These results provide proof-of-concept that compounds associated with oil sands extraction have the potential to perturb key components of serotonin synthesis (Tph1) and tryptophan metabolism (Ido2, Acmsd). Furthermore, we found that the increase in Tph1 expression paralleled expression of Ptgs2. As increased prostaglandin production has been reported in association with nonalcoholic steatohepatitis, these data provide a potential mechanism by which exposure to NA and other petroleum-based compounds may increase the risk of metabolic disease.


Sign in / Sign up

Export Citation Format

Share Document