Persulfate activation by glucose for in situ chemical oxidation

2018 ◽  
Vol 133 ◽  
pp. 247-254 ◽  
Author(s):  
Richard J. Watts ◽  
Mushtaque Ahmad ◽  
Amanda K. Hohner ◽  
Amy L. Teel
Author(s):  
Rifeng Wu ◽  
Shanquan Wang

AbstractDue to the toxicity of bioaccumulative organohalides to human beings and ecosystems, a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments. Bioremediation employing organohalide-respiring bacteria (OHRB)-mediated microbial reductive dehalogenation (Bio-RD) represents a cost-effective and environmentally friendly approach to attenuate highly-halogenated organohalides, specifically organohalides in soil, sediment and other anoxic environments. Nonetheless, many factors severely restrict the implications of OHRB-based bioremediation, including incomplete dehalogenation, low abundance of OHRB and consequent low dechlorination activity. Recently, the development of in situ chemical oxidation (ISCO) based on sulfate radicals (SO 4 ·− ) via the persulfate activation and oxidation (PAO) process has attracted tremendous research interest for the remediation of lowly-halogenated organohalides due to its following advantages, e.g., complete attenuation, high reactivity and no selectivity to organohalides. Therefore, integration of OHRB-mediated Bio-RD and subsequent PAO (Bio-RD-PAO) may provide a promising solution to the remediation of organohalides. In this review, we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and advantages. We then critically discuss the integration of Bio-RD and PAO (Bio-RD-PAO) for complete attenuation of organohalides and its prospects for future remediation applications. Overall, Bio-RD-PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of persistent organohalide pollution.


Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


2017 ◽  
Vol 24 (12) ◽  
pp. 11265-11278 ◽  
Author(s):  
Bérénice Ranc ◽  
Pierre Faure ◽  
Véronique Croze ◽  
Catherine Lorgeoux ◽  
Marie-Odile Simonnot

Sign in / Sign up

Export Citation Format

Share Document