Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion

2018 ◽  
Vol 144 ◽  
pp. 126-133 ◽  
Author(s):  
Zisheng Zhao ◽  
Yaobin Zhang ◽  
Yang Li ◽  
Xie Quan ◽  
Zhiqiang Zhao
2015 ◽  
Vol 1 (6) ◽  
pp. 761-768 ◽  
Author(s):  
Yinghong Feng ◽  
Yiwen Liu ◽  
Yaobin Zhang

Cheap Fe/graphite electrodes substantially enhanced hydrogen production from anaerobic waste activated sludge digestion in a microbial electrolysis cell.


2007 ◽  
Vol 79 (11) ◽  
pp. 2304-2317 ◽  
Author(s):  
Cigdem Eskicioglu ◽  
Kevin J. Kennedy ◽  
Ronald L. Droste

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93710 ◽  
Author(s):  
Hongguang Yu ◽  
Qiaoying Wang ◽  
Zhiwei Wang ◽  
Erkan Sahinkaya ◽  
Yongli Li ◽  
...  

2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Zhiwei Liang ◽  
Jiangjian Shi ◽  
Chen Wang ◽  
Junhui Li ◽  
Dawei Liang ◽  
...  

ABSTRACT Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance. IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.


2014 ◽  
Vol 40 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Jan Suschka ◽  
Klaudiusz Grübel

Abstract Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.


Sign in / Sign up

Export Citation Format

Share Document