Spatial scale effects of landscape metrics on stream water quality and their seasonal changes

2021 ◽  
pp. 116811
Author(s):  
Jianhong Wu ◽  
Jun Lu
Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1123 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao ◽  
Tangao Hu

The land use and land cover changes in rapidly urbanized regions is one of the main causes of water quality deterioration. However, due to the heterogeneity of urban land use patterns and spatial scale effects, a clear understanding of the relationships between land use and water quality remains elusive. The primary purpose of this study is to investigate the effects of land use on water quality across multi scales in a rapidly urbanized region in Hangzhou City, China. The results showed that the response characteristics of stream water quality to land use were spatial scale-dependent. The total nitrogen (TN) was more closely related with land use at the circular buffer scale, whilst stronger correlations could be found between land use and algae biomass at the riparian buffer scales. Under the circular buffer scale, the forest and urban greenspace were more influential to the TN at small buffer scales, whilst significant positive or negative correlations could be found between the TN and the areas of industrial land or the wetland and river as the buffer scales increased. The redundancy analysis (RDA) showed that more than 40% variations in water quality could be explained by the landscape metrics at all circular and riparian buffer scales, and this suggests that land use pattern was an important factor influencing water quality. The variation in water quality explained by landscape metrics increased with the increase of buffer size, and this implies that land use pattern could have a closer correlation with water quality at larger spatial scales.


Data Series ◽  
10.3133/ds37 ◽  
1996 ◽  
Author(s):  
Richard B. Alexander ◽  
J.R. Slack ◽  
A.S. Ludtke ◽  
K.K. Fitzgerald ◽  
T.L. Schertz ◽  
...  

1989 ◽  
Vol 21 (8-9) ◽  
pp. 1045-1056 ◽  
Author(s):  
Thomas O. Barnwell ◽  
Linfield C. Brown ◽  
Wiktor Marek

Computerized modeling is becoming an integral part of decision making in water pollution control. Expert systems is an innovative methodology that can assist in building, using, and interpreting the output of these models. This paper reviews the use and evaluates the potential of expert systems technology in environmental modeling and describes elements of an expert advisor for the stream water quality model QUAL2E. Some general conclusions are presented about the tools available to develop this system, the level of available technology in knowledge-based engineering, and the value of approaching problems from a knowledge engineering perspective.


Sign in / Sign up

Export Citation Format

Share Document