circular buffer
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 2)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12494
Author(s):  
Blandine Georges ◽  
Adrien Michez ◽  
Hervé Piegay ◽  
Leo Huylenbroeck ◽  
Philippe Lejeune ◽  
...  

Managers need to know how to mitigate rising stream water temperature (WT) due to climate change. This requires identifying the environmental drivers that influence thermal regime and determining the spatial area where interventions are most effective. We hypothesized that (i) extreme thermal events can be influenced by a set of environmental factors that reduce thermal sensitivity and (ii) the role played by those factors varies spatially. To test these hypotheses, we (i) determined which of the environmental variables reported to be the most influential affected WT and (ii)identified the spatial scales over which those environmental variables influenced WT. To this end, the influence of multi-scale environmental variables, namely land cover, topography (channel slope, elevation), hydromorphology (channel sinuosity, water level, watershed area, baseflow index) and shade conditions, was analyzed on the three model variables (day thermal sensitivity, night thermal sensitivity, and non-convective thermal flux) in the model developed by Georges et al. (2021) of the temporal thermal dynamics of daily maximum WT during extreme events. Values were calculated on six spatial scales (the entire upstream catchment and the associated 1 km and 2 km circular buffer, and 50 m wide corridors on each side of the stream with the associated 1 km and 2 km circular buffer). The period considered was 17 extreme days during the summer identified by Georges et al. (2021) based on WT data measured every 10 min for 7 years (2012–2018) at 92 measurement sites. Sites were located evenly throughout the Wallonia (southern Belgium) hydrological network. Results showed that shade, baseflow index (a proxy of the influence of groundwater), water level and watershed area were the most significant variables influencing thermal sensitivity. Since managers with finite financial and human resources can act on only a few environmental variables, we advocate restoring and preserving the vegetation cover that limits solar radiation on the watercourse as a cost-effective solution to reduce thermal sensitivity. Moreover, management at small spatial scale (50 m riparian buffer) should be strategically promoted (for finance and staffing) as our results show that a larger management scale is not more effective in reducing thermal sensitivity to extreme events.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2539
Author(s):  
Salma Ebrahimzadeh ◽  
Sara Castiglioni ◽  
Francesco Riva ◽  
Ettore Zuccato ◽  
Arianna Azzellino

Consumption of pharmaceuticals by people is growing. Carbamazepine (CBZ) is an extensively used anti-epileptic drug that is recalcitrant to degradation. As a result, CBZ has been widely detected in the aquatic ecosystem due to its daily consumption and drainage in sewage systems. Leakages from sewage networks and septic tanks may represent one of the main sources of CBZ in groundwater. In this study, CBZ concentrations in groundwater and their correlations with the demographic structure of the population were investigated in the densely populated Milan urban area. Seventy-six demographic variables were retrieved from the Italian Population and Housing census. Twenty-one groundwater samples were collected from unconfined and semi-confined aquifers of the Milan area and the concentration of CBZ was measured. Groundwater CBZ levels in both aquifers were associated with the demographic data within a circular buffer with a radius of 1.5 km. All data were analyzed using a multivariate statistical approach. The results showed a significant association (p < 0.05) between CBZ concentrations and specific demographic segments of the population. Higher CBZ concentrations were found to be associated with the population aged 70 years and over (aging index), and with families having children aged under 5 years (family index). In addition, the divorce index was correlated with the high concentration of CBZ, whereas the educated and sexagenarian population showed a negative correlation. Our results indicated that the contamination of CBZ follows the same pattern in unconfined and semi-confined aquifers, which are used for drinking water purposes in Milan area. Therefore, changing the CBZ consumption pattern or replacing CBZ with other drugs may strongly influence groundwater contamination of the investigated area.


Author(s):  
Soumya Mazumdar ◽  
Shanley Chong ◽  
Thomas Astell-Burt ◽  
Xiaoqi Feng ◽  
Geoffrey Morgan ◽  
...  

The choice of a green space metric may affect what relationship is found with health outcomes. In this research, we investigated the relationship between percent green space area, a novel metric developed by us (based on the average contiguous green space area a spatial buffer has contact with), in three different types of buffers and type 2 diabetes (T2D). We obtained information about diagnosed T2D and relevant covariates at the individual level from the large and representative 45 and Up Study. Average contiguous green space and the percentage of green space within 500 m, 1 km, and 2 km of circular buffer, line-based road network (LBRN) buffers, and polygon-based road network (PBRN) buffers around participants’ residences were used as proxies for geographic access to green space. Generalized estimating equation regression models were used to determine associations between access to green space and T2D status of individuals. It was found that 30%–40% green space within 500 m LBRN or PBRN buffers, and 2 km PBRN buffers, but not within circular buffers, significantly reduced the risk of T2D. The novel average green space area metric did not appear to be particularly effective at measuring reductions in T2D. This study complements an existing research body on optimal buffers for green space measurement.


Author(s):  
Ronan Hart ◽  
Lu Liang ◽  
Pinliang Dong

Fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is highly variable in space and time. In this study, the dynamics of PM2.5 concentrations were mapped at high spatio-temporal resolutions using bicycle-based, mobile measures on a university campus. Significant diurnal and daily variations were revealed over the two-week survey, with the PM2.5 concentration peaking during the evening rush hours. A range of predictor variables that have been proven useful in estimating the pollution level was derived from Geographic Information System, high-resolution airborne images, and Light Detection and Ranging (LiDAR) datasets. Considering the complex interplay among landscape, wind, and air pollution, variables influencing the PM2.5 dynamics were quantified under a new wind wedge-based system that incorporates wind effects. Panel data analysis models identified eight natural and built environment variables as the most significant determinants of local-scale air quality (including four meteorological factors, distance to major roads, vegetation footprint, and building and vegetation height). The higher significance level of variables calculated using the wind wedge system as compared to the conventional circular buffer highlights the importance of incorporating the relative position of emission sources and receptors in modeling.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1123 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao ◽  
Tangao Hu

The land use and land cover changes in rapidly urbanized regions is one of the main causes of water quality deterioration. However, due to the heterogeneity of urban land use patterns and spatial scale effects, a clear understanding of the relationships between land use and water quality remains elusive. The primary purpose of this study is to investigate the effects of land use on water quality across multi scales in a rapidly urbanized region in Hangzhou City, China. The results showed that the response characteristics of stream water quality to land use were spatial scale-dependent. The total nitrogen (TN) was more closely related with land use at the circular buffer scale, whilst stronger correlations could be found between land use and algae biomass at the riparian buffer scales. Under the circular buffer scale, the forest and urban greenspace were more influential to the TN at small buffer scales, whilst significant positive or negative correlations could be found between the TN and the areas of industrial land or the wetland and river as the buffer scales increased. The redundancy analysis (RDA) showed that more than 40% variations in water quality could be explained by the landscape metrics at all circular and riparian buffer scales, and this suggests that land use pattern was an important factor influencing water quality. The variation in water quality explained by landscape metrics increased with the increase of buffer size, and this implies that land use pattern could have a closer correlation with water quality at larger spatial scales.


2020 ◽  
Vol 5 (1) ◽  
pp. 088-097 ◽  
Author(s):  
Jessé Moura dos Santos ◽  
Mayara Maria de Lima Pessoa ◽  
Rinaldo Luiz Caraciolo Ferreira ◽  
Emanuel Araújo Silva

Landscape Ecology using GIS is applied to understand the effects of forest fragmentation and makes it feasible mainly for extensive areas, through the possibility of analyzing both the variety of units that compose it in time. This study aims to analyze the land use and coverage of tropical dry forests and to characterize their landscape structure in an area of the municipality of Floresta, Pernambuco, Brazil, in order to understand how the landscape configuration can influence the conservation. Orbital images were used from LANDSAT, and the classification was performed in the QGIS 2.18 software using the Maximum Likelihood methodification, for the years of 2007 and 2017. A circular buffer was incorporated around the area of study to analyze the structural patterns in the context of the landscape. Five thematic classes were used: dense vegetation, sparse vegetation, exposed soil, grassland, and water. The metrics were obtained through the Patch Analyst tool only to the class of dense vegetation. It is noted that much of the dense vegetation has become sparse. There was a reduction of exposed soil and an increase in grassland areas, which may indicate a regeneration process of the vegetation. The fragments of dense vegetation with more substantial dimensions are on constant exploratory actions and are the most affected with the reduction of size. Furthermore, climatic factors, periods of drought, and the presence of livestock may also affect the fragmentation of dense vegetation patches. Therefore, the landscape became heterogeneous, and a tendency was observed to increase the fragmentation, mainly in the more significant spots.


Author(s):  
Qiang Gao ◽  
Matti Linjama ◽  
Miika Paloniitty ◽  
Yuchuan Zhu

This article concerns high accuracy positioning control with switching optimization for an equal coded digital valve system. Typically, pulse number modulation control cannot realize micro-positioning due to the characteristics of step-wise flow variation, therefore, a new position controller consisting of a model-based pulse number modulation and a differential pulse width modulation strategy is proposed to control the position of a hydraulic cylinder at high and low velocity cases, respectively. In addition, in order to solve several problems caused by the pulse number modulation and differential pulse width modulation, such as increased number of switchings and large difference among number of switchings of valves, a switching optimization consisting of a switching cost function, a circular buffer and a circular switching method is proposed. An adaptive weight of the switching cost function is proposed for the first time to reduce the total number of switchings under different pressure differences and its design criterion is presented. A circular buffer and a new circular switching method are used to improve the degree of equal distribution of switchings when the pulse number modulation and differential pulse width modulation are used, respectively. Comparative experimental results indicated that the average and the minimum positioning error for the proposed controller are only 10 and 1 μm, respectively. The number of switchings and the degree of equal distribution of switchings are significantly optimized. Moreover, the pressure fluctuations caused by the proposed controller remain acceptable.


Sign in / Sign up

Export Citation Format

Share Document