ASSESSING THE IMPACT OF GROUNDWATER CONTAMINATION ON STREAM WATER QUALITY BY MULTIPLE APPROACHES AT THE GROUNDWATER-SURFACE WATER INTERFACE

2017 ◽  
Author(s):  
Poul L. Bjerg ◽  
◽  
Vinni Rønde ◽  
Nicola Balbarini ◽  
Anne Th. Sonne ◽  
...  
2010 ◽  
Vol 61 (12) ◽  
pp. 3216-3220 ◽  
Author(s):  
G. Kim ◽  
H. Lee ◽  
Y. Lim ◽  
M. Jung ◽  
D. Kong

It is a well-known fact that baseflow discharge of rainfall runoff significantly impacts the quality of surface water. In this paper, the impact of nitrates discharged as baseflow on stream water quality were studied using PULSE, a hydrograph separation software developed by USGS, to calculate the monthly baseflow discharge. We took water quality and flow rate data from a monitoring station site (code: Ghapcehon2) in Daejeon city and acquired 2005 groundwater quality data in the watershed from government agencies. Agricultural and forestry land use are dominant in the area. The baseflow contributes 85%–95% of stream flows during the spring and fall, 25%–38% during the summer and winter. The monthly nitrate loading discharged as baseflow for Ghapcheon2 was estimated by using monitored nitrate concentrations of groundwater in the watershed. Nitrate loading induced by baseflow at Ghapcheon2 was estimated as 5.4 tons of NO3−-N/km2, which is about 60% of nitrate loading of surface water, or 9.2 tons of NO3−-N/km2. This study shows that groundwater quality monitoring is important for proper management of surface water quality.


2004 ◽  
Vol 8 (3) ◽  
pp. 503-520 ◽  
Author(s):  
C. Neal ◽  
B. Reynolds ◽  
M. Neal ◽  
H. Wickham ◽  
L. Hill ◽  
...  

Abstract. Results for long term water quality monitoring are described for the headwaters of the principal headwater stream of the River Severn, the Afon Hafren. The results are linked to within-catchment information to describe the influence of conifer harvesting on stream and shallow groundwater quality. A 19-year record of water quality data for the Hafren (a partially spruce forested catchment with podzolic soil) shows the classic patterns of hydrochemical change in relation to concentration and flow responses for upland forested systems. Progressive felling of almost two-thirds of the forest over the period of study resulted in little impact from harvesting and replanting in relation to stream water quality. However, at the local scale, a six years’ study of felling indicated significant release of nitrate into both surface and groundwater; this persisted for two or three years before declining. The study has shown two important features. Firstly, phased felling has led to minimal impacts on stream water. This contrasts with the results of an experimental clear fell for the adjacent catchment of the Afon Hore where a distinct water quality deterioration was observed for a few years. Secondly, there are localised zones with varying hydrology that link to groundwater sources with fracture flow properties. This variability makes extrapolation to the catchment scale difficult without very extensive monitoring. The implications of these findings are discussed in relation to strong support for the use of phased felling-based management of catchments and the complexities of within catchment processes. Keywords: deforestation, water quality, acidification, pH, nitrate, alkalinity, ANC, aluminium, dissolved organic carbon, Plynlimon, forest, spruce, Afon Hafren, podzol


2004 ◽  
Vol 8 (3) ◽  
pp. 422-435 ◽  
Author(s):  
S. J. Langan ◽  
D. Hirst

Abstract. A long term record of water chemistry, consisting of twenty years of weekly spot samples, from three sub-catchments draining into a loch and the loch outflow in Galloway, S.W. Scotland have been analysed. The analysis undertaken consisted of a three component statistical trend model. The technique allows the identification of long-term, seasonal and short-term trends, as well as differentiation between base flow and high flow responses. The land usage in the three sub-catchments is moorland, forest and forest plus lime. The results show that, since the mid-1980s, there has been a gradual decline in stream-water sulphate of the same order as reductions in the deposition of non-marine sulphate. Superimposed on this trend are somewhat random but considerable perturbations to this decline, caused by sea-salt deposition. There is no evidence of changes in surface water nitrate concentrations. The influence of different land management is evident in the sulphate, nitrate and pH data, whilst variations in calcium concentrations are also a product of differences in hydrological routing and the impact of sea-salt episodes. Keywords: trend analysis, acid deposition, land management, water quality, sea-salts, Galloway, S.W. Scotland


2012 ◽  
Vol 60 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Bahman Amiri ◽  
K. Sudheer ◽  
Nicola Fohrer

Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann ApproachDevelopment of any area often leads to more intensive land use and increase in the generation of pollutants. Modeling these changes is critical to evaluate emerging changes in land use and their effect on stream water quality. The objective of this study was to assess the impact of spatial patterns in land use and population density on the water quality of streams, in case of data scarcity, in the Chugoku district of Japan. The study employed artificial neural network (ANN) technique to assess the relationship between the total phosphorous (TP) in river water and the land use in 21 river basins in the district, and the model was able to reasonably estimate the TP in the stream water. Uncertainty analysis of ANN estimates was performed using the Monte Carlo framework, and the results indicated that the ANN model predictions are statistically similar to the characteristics of the measured TP values. It was observed that any reduction in forested area or increase in agricultural land in the watersheds may cause the increase of TP concentration in the stream. Therefore, appropriate watershed management practices should be followed before making any land use change in the Chugoku district.


Author(s):  
Sunsook Jang ◽  
Hyunseo Ji ◽  
Jiyong Choi ◽  
Kyo Suh ◽  
Hakkwan Kim

Abstract The purpose of this study was to investigate the relationship between stream water quality and the surface runoff rate defined as the ratio of annual surface runoff to annual average precipitation. The surface runoff rate was first estimated in the Han River basin located in South Korea using the calibrated and validated HSPF model. Then a linear regression analysis was performed to investigate the correlation between the computed surface runoff rate and the observed water quality. It was found that there were statistically significant relationships between the surface runoff rate and concentrations of BOD, COD, and T-P and higher surface runoff rate led to the deterioration of water quality in streams. Finally, the applicability of the surface runoff rate as an indicator to measure the impact of land development on stream water quality was evaluated using a receiver operating characteristic (ROC) curve analysis. The ROC curve analysis indicated that the surface runoff rate could be utilized as a useful indicator to illustrate the degradation of stream water quality at the watershed scale. The results from this study also suggest that the surface runoff rate needs to be managed and controlled within about 15% to prevent the degradation of stream water quality.


Geografie ◽  
2018 ◽  
Vol 123 (4) ◽  
pp. 479-505
Author(s):  
Luboš Mrkva ◽  
Bohumír Janský

Despite major investments into the remediation of wastewater, and the reduction of fertilizers, the quality of small river surface water in agricultural and rural regions of Czechia is still very low. The Mastník stream flows through an agricultural area before combining with the Vltava river; a portion of the Mastník stream water inevitably terminates in the Slapy Reservoir. The quality of the water has been analyzed using data from indicator concentrations from both the Vltava River Basin Authority study profiles, and the author’s monitoring profile. The data show that the steps that have been taken – primarily the construction of wastewater treatment plants – have led to a gradual improvement in the surface water quality by some parameters. Presently, a growing concentration of chlorophyll–α and a lack of dissolved oxygen are influencing the final quality of the water. In the case of the Mastník stream, it is particularly necessary to improve the remediation of wastewater from small households, and to reduce the impact of water erosion on agricultural soil.


Author(s):  
Erik D. White ◽  
Robin A. Semer ◽  
David C. Scharre ◽  
Neil B. Childress

States are required to develop and adopt anti-degradation policies and implementation procedures pursuant to federal regulations [1] to protect existing in stream water quality and water uses. States are requiring National Pollutant Discharge Elimination System (NPDES) dischargers from new sources, which could result in lowering of existing water quality, to perform an anti-degradation demonstration as part of the NPDES permit application process. These evaluations are appropriate where a proposed discharge may have a significant adverse impact on water quality. However, they are an unnecessary burden on both the permit applicant and the reviewing agency where the proposed discharge is minor relative to existing water quality. Therefore, de minimis evaluations provide a technical approach that States can use to avoid the need for, or limit the scope of, anti-degradation demonstrations where the impact at the proposed discharge is minor. This paper provides a de minimis evaluation approach for addressing anti-degradation as part of an NPDES permit application process. The approach, which ascertains what conditions would or would not constitute a “de minimis lowering of water quality,” was recently used in support of a new combined-cycle power plant in one of the central states.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2025 ◽  
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Luís Filipe Sanches Fernandes ◽  
Rui Manuel Vitor Cortes ◽  
Fernando António Leal Pacheco

Water resources are threatened by many pollution sources. The harmful effects of pollution can be evaluated through biological indicators capable of tracing problems in life forms caused by the contaminants discharged into the streams. In the present study, the effects on stream water quality of landscape configuration, season, and distance from contaminant emissions of diffuse and point sources were accessed through the evaluation of a Portuguese macroinvertebrate index (IPtIN) in 12 observation points distributed within the studied area (Ave River Basin, Portugal). Partial least-squares path models (PLS-PMs) were used to set up cause–effect relationships between this index, various metrics adapted to forest, agriculture, and artificial areas, and the aforementioned emissions, considering 13 distances from the contaminant sources ranging from 100 m to 56 km. The PLS-PM models were applied to summer and winter data to explore seasonality effects. The results of PLS-PM exposed significant scale and seasonal effects. The harmful effects of artificial areas were visible for distances larger than 10 km. The impact of agriculture was also distance related, but in summer this influence was more evident. The forested areas could hold onto contamination mainly in the winter periods. The impact of diffuse contaminant emissions was stronger during summer, when accessed on a short distance. The impact of effluent discharges was small, compared to the influence of landscape metrics, and had a limited statistical significance. Overall, the PLS-PM results evidenced significant cause–effect relationships between land use metrics and stream water quality at 10 km or larger scales, regardless of the season. This result is valid for the studied catchment, but transposition to other similar catchments needs to be carefully verified given the limited, though available, number of observation points.


Sign in / Sign up

Export Citation Format

Share Document