scholarly journals Fertilizer Demand and Potential Supply through Nutrient Recovery from Organic Waste Digestate in California

2021 ◽  
pp. 117717
Author(s):  
Kevin D. Orner ◽  
Sarah J. Smith ◽  
Hanna M. Breunig ◽  
Corinne D. Scown ◽  
Kara L. Nelson
Author(s):  
Edgar Martín-Hernández ◽  
Apoorva M. Sampat ◽  
Mariano Martin ◽  
Victor M. Zavala ◽  
Gerardo J. Ruiz-Mercado

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel C. Rosenfeld ◽  
Johannes Lindorfer ◽  
Markus Ellersdorfer

Abstract Background Due to climate change and the rising world population, sustainable energy and fertilizer production faces many challenges. The utilization of organic waste fractions is one possible solution for promoting sustainability. Organic waste fractions have a high potential for biomethane production, which could positively contribute to the current energy mix. Furthermore, organic waste fractions could be used for nutrient recovery (i.e., the recovery of N and P) concurrently to their use in biomethane production. This study examined the theoretical potential of organic waste fractions for valorization in Austria. Further, it provides a theoretical overview of biomethane production and nutrient-recovery potential. Results This analysis revealed a total substrate potential of 13 Mt per year in Austria, with the highest contribution from manure. Over 900 million Nm3 of biomethane could potentially be produced from organic waste fractions. Furthermore, developing organic waste fractions as an energy source could improve the impact of the natural gas consuming sectors on climate, reducing 2.4 Mt of CO2 emissions annually. Regarding nutrient recovery, more than 60 kt of N and 20 kt of P could potentially be recovered per year. Conclusion The study shows a high potential for producing biomethane from organic waste fractions in Austria. The overall production potential could substitute up to 11% of the Austrian natural gas demand, which could highly decrease the CO2 emissions from fossil energy carriers. Furthermore, a high nutrient recovery potential was identified for an inclusive implementation of an efficient recovery.


Author(s):  
Gonzalo Flores-Morales ◽  
Mónica Díaz ◽  
Patricia Arancibia-Avila ◽  
Michelle Muñoz-Carrasco ◽  
Pamela Jara-Zapata ◽  
...  

Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.


2012 ◽  
Vol 48 (1) ◽  
pp. 23-27
Author(s):  
TOMONAO MIYASHIRO ◽  
QINGHONG WANG ◽  
YINGNAN YANG ◽  
KAZUYA SHIMIZU ◽  
NORIO SUGIURA ◽  
...  

2019 ◽  
Vol 18 (9) ◽  
pp. 2023-2034 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Boguslawa Waliszewska ◽  
Magdalena Zborowska ◽  
Kamil Witaszek ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 13-16
Author(s):  
V.G. Tyrin ◽  
◽  
G.A. Mysova ◽  
K.N. Biryukov ◽  
N.N. Potemkina ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
João Macedo Moreira ◽  
Aldrin Martin Pérez-Marin ◽  
Jucilene Silva Araújo ◽  
George Rodrigues Lambais ◽  
Aldo Sales

The study aimed to evaluate the efficiency of nutrient use in three cactus forage (CF) cultivars (Opuntia stricta and Nopalea cochenillifera), 365 days after planting under different types of fertilizer in two research sites (Condado and Riachão) of the semi-arid region of Paraiba state, Brazil. The experimental design was a randomized block design with treatments in a factorial scheme (3×4), three cultivars of CF (Orelha de elefante Mexicana; Miúda; Bahiana), and four fertilizer treatment (Control; Manure; Manure with Nitrogen; Mineral fertilization) with four replications. The CF cultivars did not differ significantly in nutrient use. That means of physiological efficiency by CF cultivars were 1.62, and 2.36 kg of biomass per kg of nutrient applied in Condado and Riachão, respectively. The efficiency of nutrient recovery was 16% for the Condado, according the following order: K> P> Ca> N> C = Mg and 12% for Riachão: K> P> N> C = Ca = Mg. In the two research sites, the treatment with mineral fertilization significantly increased the efficiency use of N, P and K in comparison to the other treatments. The average for efficiency of nutrient utilization was 25% and 19% for Condado and Riachão, respectively, in the following order for Condado: K> P> N> Ca = Mg> C, and Riachão: K> P> N> C> Mg = Ca. In a CF production system aiming to obtain a yearly harvest cycle, it is necessary to replenish of K and P to maintain the nutritional balance between the soil and CF plant.


Sign in / Sign up

Export Citation Format

Share Document