Eutrophication causes microbial community homogenization via modulating generalist species

2021 ◽  
pp. 118003
Author(s):  
Mengdie Geng ◽  
Weizhen Zhang ◽  
Ting Hu ◽  
Rong Wang ◽  
Xiaoying Cheng ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica L. Bergman ◽  
William Leggat ◽  
Tracy D. Ainsworth

Coral bleaching events in the marine environment are now occurring globally, and the frequency and severity of these events are increasing. Critically, these events can cause the symbiosis between Symbiodiniaceae and their coral hosts to break down, but how the microbial community within the coral responds to bleaching is still equivocal. We investigated the impact of thermal stress exposure on the meta-organism responses of the generalist scleractinian coral species Pocillopora damicornis. Using mesocosms to recreate warming scenarios previously observed at Heron Island, we show that P. damicornis symbiont densities and photophysiological parameters declined at a similar rate under thermal stress regardless of the length of pre-bleaching thermal stress, defined here as temperatures above the monthly maximum mean (MMM) for Heron Island but below the local bleaching threshold (MMM + 2°C). However, we find that the P. damicornis microbiome remains stable over time regardless of the degree of thermal stress and the accumulation of pre-bleaching thermal stress. Our study therefore suggests that while P. damicornis is physiologically impacted by bleaching temperatures, the microbial community identified through 16S rRNA sequencing remains unchanged at the ASV level throughout bleaching. Understanding the capacity of a generalist species to withstand bleaching events is imperative to characterizing what coral species will exist on coral reefs following disturbances, as it has been suggested that the success of environmental generalist species may simplify community structure and lead to changes in biodiversity following environmental disturbance.


2019 ◽  
Vol 95 (8) ◽  
Author(s):  
Julius L Rombouts ◽  
Galvin Mos ◽  
David G Weissbrodt ◽  
Robbert Kleerebezem ◽  
Mark C M Van Loosdrecht

ABSTRACT Efficient industrial fermentation of lignocellulosic waste containing a large part of glucose and xylose is desirable to implement a circular economy. Mixed culture biotechnologies can aid in realizing this goal. The effect of feeding equivalent substrates to a microbial community, such a xylose and glucose, is not well understood in terms of the number of dominant species and how these species compete for the substrates. We compared the metabolism and microbial community structure in a continuous-flow stirred tank reactor (CSTR) and a sequencing batch reactor (SBR) fed with a mixture of xylose and glucose, inoculated with bovine rumen at pH 8, 30°C and a hydraulic retention time of 8 h. We hypothesised that a CSTR will select for generalist species, taking up both substrates. We used 16S rRNA gene sequencing and fluorescent in situ hybridisation to accurately determine the microbial community structures. Both enrichments were stoichiometrically and kinetically characterised. The CSTR enrichment culture was dominated by Clostridium intestinale (91% ± 2%). The SBR showed an abundance of Enterobacteriaceae (75% ± 8%), dominated by Citrobacter freundii and a minor fraction of Raoultella ornithinolytica. C. freundii ferments xylose and glucose in a non-diauxic fashion. Clearly, a non-diauxic generalist outcompetes specialists and diauxic generalists in SBR environments.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2020 ◽  
Vol 158 (3) ◽  
pp. S66
Author(s):  
Venu Lagishetty ◽  
Nerea Arias ◽  
Tien Dong ◽  
Meg Hauer ◽  
William Katzka ◽  
...  

2009 ◽  
Vol 27 (4) ◽  
pp. 385-387
Author(s):  
W. D. Eaton ◽  
B. Wilmot ◽  
E. Epler ◽  
S. Mangiamelli ◽  
D. Barry

Sign in / Sign up

Export Citation Format

Share Document