New parameter for characterizing and correlating impact-sliding fretting wear to energy dissipation—experimental investigation

Wear ◽  
2007 ◽  
Vol 263 (1-6) ◽  
pp. 419-429 ◽  
Author(s):  
Helmi Attia ◽  
Y.B. Gessesse ◽  
M.O.M. Osman
Author(s):  
Xueyu Qi ◽  
Ting Wu ◽  
Yiming Chen ◽  
Ke Yang ◽  
Wei Zhao ◽  
...  

Abstract In this paper, experimental investigation on two oil-soluble DRAs were carried out in stirred vessel by standard six-blade Rushton, based on the application of particle image velocimeter (PIV). Two DRAs (1# and 2#) with different concentration from 3 ppm to 50 ppm were added into diesel respectively, and speed of impeller speed was set 400 rpm. Flow field characteristics including turbulence intensity, turbulent kinetic energy, energy dissipation rate influenced by those additives in stirred vessel were study. It was found that inhibition effect of turbulence intensity of the two DRAs is not obvious with concentration below 10 ppm. However, when concentration is above 10 ppm, turbulence inhibition effect become more obvious. Under low concentration, 1# has better turbulence inhibition effect in area near impeller, while 2# has better turbulence inhibition effect under high concentration. When the two DRAs are under the same concentration of 50ppm, turbulent flow energy and energy dissipation rate are obviously reduced.


Author(s):  
Pierre Moussou ◽  
Vincent Fichet ◽  
Luc Pastur ◽  
Constance Duhamel ◽  
Yannick Tampango

Abstract In order to better understand the mechanisms of fretting wear damage of guide cards in some Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP), an experimental investigation is undertaken at the Magaly facility in Le Creusot. The test rig consists of a complete Rod Cluster with eleven Guide Cards, submitted to axial flow inside a water tunnel. In order to mimic the effect of fretting wear, the four lower guide cards have enlarged gaps, so that the Control Rods are free to oscillate. The test rig is operated at ambient temperature and pressure, and Plexiglas walls can be arranged along its upper part, and a series of camera records the vibrations of the control rods above and below the guide cards. The vertical flow velocity is in the range of a few m/s. Beam-like pinned-pinned modes at about 5 Hz are observed, and oscillations of several mm of the central rods are measured, which come along with impacts at the higher flow velocities. A simple non-linear calculation reveals that the main effect of the impacts between Control Rods and Guide Cards is an increase of the natural frequency of the rods by about 10%. Furthermore, as the vibration spectra collapse remarkably well with the flow velocity, the experiments prove that turbulent forcing is responsible for the large oscillations of the control rods, no other mechanism being involved.


2014 ◽  
Vol 11 (6) ◽  
pp. 589-596
Author(s):  
Valesyan Shant

The effect of ageing on the dissipative properties of getinacks subjected to repeated static loading has been investigated. Specimens were tested at the age of 1, 4, and 8 years. The approximation of experimental data is done, and the energy of dissipation is calculated. Based on the investigation of getinacks manufactured by the technology of regulated thermo-pressing, this technology can be recommended for the manufacturing of appropriate products.The results of experimental investigation of the effect of temperature field on the dissipative properties of layered getinacks widely applicable in electrical manufacturing, electronics and microelectronics are considered in this paper. The approximation of the experimentally obtained dependences between σ and ε for the loading (→) and unloading (←) parts of the hysteresis loop are calculated and plotted. The factor of energy dissipation is defined. Estimated that the temperature field affects the dissipative properties of the layered getinacks and that effect is depending on the value of applied load cyclically acting on the material.


2012 ◽  
Vol 55 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Benjamin D. Leonard ◽  
Farshid Sadeghi ◽  
Sachin Shinde ◽  
Marc Mittelbach

Wear ◽  
2020 ◽  
Vol 462-463 ◽  
pp. 203497 ◽  
Author(s):  
Xinlu Yuan ◽  
Gen Li ◽  
Xiaoyu Zhang ◽  
Jian Pu ◽  
Pingdi Ren

2010 ◽  
Vol 34 (2) ◽  
pp. 165-196 ◽  
Author(s):  
Vincent O. S. Olunloyo ◽  
Olatunde Damisa ◽  
Charles A. Osheku ◽  
Ayo A. Oyediran

In aerodynamic and machine structures, one of the effective ways of dissipating unwanted vibration or noise is to exploit the occurrence of slip at the interface of structural laminates where such members are held together in a pressurised environment. The analysis and experimental investigation of such laminates have established that when subjected to either static or dynamic loading, non-uniformity in interface pressure can have significant effect on both the energy dissipation and the logarithmic damping decrement associated with the mechanism of slip damping. Such behaviour can in fact be effectively exploited to increase the level of damping available in such a mechanism. What has however not been examined is to what extent is the energy dissipation affected by the relative sizes or the material properties of the upper and lower laminates? In this paper the analysis is extended to incorporate such effects. In particular, by invoking operational methods, it is shown that variation in laminate thickness may provide less efficacious means of maximizing energy dissipation than varying the choice of laminate materials but that either of these effects can in fact dwarf those associated with non-uniformity in interface pressure. To achieve this, a special configuration is required for the relative sizes and layering of the laminates. In particular, it is shown that for the case of two laminates, the upper laminate is required to be thinner and harder than the lower one. These results provide a basis for the design of such structures.


Sign in / Sign up

Export Citation Format

Share Document