scholarly journals A coupled approach for rolling contact fatigue cracks in the hydrodynamic lubrication regime: The importance of fluid/solid interactions

Wear ◽  
2011 ◽  
Vol 271 (5-6) ◽  
pp. 720-733 ◽  
Author(s):  
Robbie Balcombe ◽  
Mark T. Fowell ◽  
Andrew V. Olver ◽  
Stathis Ioannides ◽  
Daniele Dini
Author(s):  
R. Balcombe ◽  
M. T. Fowell ◽  
A. V. Olver ◽  
D. Dini

In this paper we present a coupled method for modelling fluid-solid interaction within a crack generated in rolling contact fatigue (RCF) in the presence of lubrication. The technique describes the fluid flow in the contact area and within the crack and explores how this affects the elastic deformation of the solid while the moving load traverses the cracked region. It is argued that this approach sheds light on the instantaneous response of the system, therefore providing a more physically-accurate description of the phenomenon under investigation.


2010 ◽  
Vol 97-101 ◽  
pp. 793-796 ◽  
Author(s):  
Khalil Farhangdoost ◽  
Mohammad Kavoosi

This study performed the finite element analysis of the cycle of stress intensity factors at the surface initiated rolling contact fatigue crack tip under Hertzian contact stress including an accurate model of friction between the faces of the crack and the effect of fluid inside the crack. A two-dimensional model of a rolling contact fatigue crack has been developed with FRANC-2D software. The model includes the effect of Coulomb friction between the faces of the crack. The fluid in the crack was assumed not only to lubricate the crack faces and reduce the crack face friction coefficient but also to generate a pressure.


1968 ◽  
Vol 90 (1) ◽  
pp. 106-112 ◽  
Author(s):  
R. J. Parker ◽  
E. N. Bamberger ◽  
E. V. Zaretsky

Several lubricants that are considered candidates for ball bearing applications in the temperature range of 500 to 700 deg F were investigated in full-scale ball bearings and in a rolling-contact fatigue rig. Bearing endurance tests indicate that a synthetic paraffinic oil with an antiwear additive can perform beyond catalog rating at temperatures up to 600 deg F in a low oxygen environment. In a rolling-contact fatigue tester, this synthetic paraffinic oil exhibited at least twice the fatigue life at the 10 percent level of a fluorocarbon and a polyphenyl ether. Based on bearing race groove appearance, elasto-hydrodynamic lubrication was apparent at outer-race temperatures up to 700 deg F.


Sign in / Sign up

Export Citation Format

Share Document