A contribution to tire/road friction modeling: From a simplified dynamic frictional contact model to a “Dynamic Friction Tester” model

Wear ◽  
2015 ◽  
Vol 342-343 ◽  
pp. 163-171 ◽  
Author(s):  
Malal Kane ◽  
Veronique Cerezo
Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350023 ◽  
Author(s):  
WU BIN CHENG ◽  
MICHAEL A. J. MOSER ◽  
SIVARUBAN KANAGARATNAM ◽  
WEN JUN ZHANG

Colonoscopy is common procedure frequently carried out. It is not without its problems, which include looping formation. Looping formation prevents the tip of the colonoscope itself from advancing, thus further probing induces a risk of perforation, significant patient discomfort, and failure of colonoscopy. During colonoscopy, the manipulated colonoscope for intubation in the colon goes through the friction between the colonoscope and the colon. Due to major frictional force, the sigmoidal colon forms looping with the scope during intubation. The interactive frictional force between the colon and the colonoscope is highly complex because of frictional contact between two deformable objects. In this paper, contact force computation was formulated into a linear complementarity problem (LCP) by linearizing Signorini's problem, which was adapted into non-interpenetration with unilateral constraints. Frictional force was computed by the mechanical compliance of finite element method (FEM) models with the consideration of dynamic friction between the colonoscope and the intestinal wall. Furthermore, we presented a mathematical model of the elongation of the colon that predicts the motion of scope relative to the intestinal wall in colonoscopy.


1999 ◽  
Vol 4 ◽  
pp. 15-22 ◽  
Author(s):  
Hironari Abe ◽  
Shuichi KAMEYAMA ◽  
Akinori TAMAI ◽  
Atsushi KASAHARA ◽  
Kazuo SAITO

Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Cyrus Shafai

This work proposes a simple but general experimental approach including the rig design and measurement procedure to carry out a wide range of experiments required for identifying parameters for LuGre dynamic friction model. The design choice is based on accuracy of the estimated friction and flexibility in terms of changing contact conditions. The experimental results allow a complete LuGre model, which facilitates, but not limited to, other advanced friction modeling and high performance controller design if needed. In addition, several well-known dynamic friction features (varying break-away force, friction lag and presliding) are successfully demonstrated by our rig, which indicates the adequacy of our approach for capturing highly sophisticated and dynamic friction behavior over a wide range of operating conditions. The proposed set-up and the produced experimental data are believed to greatly facilitate the development of advanced friction compensation and modeling in friction affected mechanisms.


Sign in / Sign up

Export Citation Format

Share Document