Wear and vibration behavior of ZDDP-Containing oil considering scuffing failure

Wear ◽  
2021 ◽  
Vol 478-479 ◽  
pp. 203923
Author(s):  
Shin-Yuh Chern ◽  
Thi-Na Ta ◽  
Jeng-Haur Horng ◽  
Yue-Syun Wu
2021 ◽  
pp. 109963622110204
Author(s):  
Mehdi Zarei ◽  
Gholamhossien Rahimi ◽  
Davoud Shahgholian-Ghahfarokhi

The free vibration behavior of sandwich conical shells with reinforced cores is investigated in the present study using experimental, analytical, and numerical methods. A new effective smeared method is employed to superimpose the stiffness contribution of skins with those of the stiffener in order to achieve equivalent stiffness of the whole structure. The stiffeners are also considered as a beam to support shear forces and bending moments in addition to the axial forces. Using Donnell’s shell theory and Galerkin method, the natural frequencies of the sandwich shell are subsequently derived. To validate analytical results, experimental modal analysis (EMA) is further conducted on the conical sandwich shell. For this purpose, a method is designed for manufacturing specimens through the filament winding process. For more validation, a finite element model (FEM) is built. The results revealed that all the validations were in good agreement with each other. Based on these analyses, the influence of the cross-sectional area of the stiffeners, the semi-vertex angle of the cone, stiffener orientation angle, and the number of stiffeners are investigated as well. The results achieved are novel and can be thus employed as a benchmark for further studies.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2001 ◽  
Vol 79 (16) ◽  
pp. 1451-1459 ◽  
Author(s):  
P.N. Saavedra ◽  
L.A. Cuitiño

2012 ◽  
Vol 245 ◽  
pp. 24-32 ◽  
Author(s):  
Adrian Olaru ◽  
Serban Olaru ◽  
Aurel Oprean

The most important things in the dynamic research of industrial robots are the vibration behavior, the transfer function and the vibration power spectral density between some of the robot joints and components. In the world this research is made without the assisted research. In each of the study cases in this paper was used the proper virtual Fourier analyzer and was presented one new method of the assisted vibration analysis. With this research it is possible the optimal choosing the base modulus type to avoid the frequencies from the robot spectrum. In the manufacturing systems, the most important facts are the vibration behavior of the robot, the compatibility with some other components of the system. All the VI where achieved in the LabVIEW soft 8.2 version, from National Instruments, USA. This method and the created virtual LabVIEW instrumentation are generally and they are possible to apply in many other dynamic behavior research.


2020 ◽  
Vol 2020 (0) ◽  
pp. 516
Author(s):  
Masaki UEHARA ◽  
Yoshiki SUGAWARA ◽  
Masakazu TAKEDA

2019 ◽  
Vol 109 (09) ◽  
pp. 656-661
Author(s):  
A. Karim ◽  
C. Michalkowski ◽  
A. Lechler ◽  
A. Verl

Dieser Beitrag untersucht experimentell das dynamische Schwingverhalten eines „KR-500–3 MT“ von Kuka mittels eines elektromagnetischen Schwingerregers (Shaker) an insgesamt 28 Messposen im Arbeitsraum. Diese Untersuchungsmethode ist neuartig, da die Ergebnisse mit einer Modalanalyse mit Impulshammeranregung verglichen werden. Ab der vierten Eigenmode entstehen Unterschiede aufgrund der Anregungsform. Zudem wird an jeder Pose eine Messung mit angezogener Motorbremse und eine mit aktiver Regelung durchgeführt und miteinander verglichen.   This paper explores experimentally the dynamic vibration behavior of a Kuka KR-500 MT, using an electromagnetic vibration exciter (shaker) on a total of 28 measuring poses in the working space. As such studies are not known, the results are compared to a modal analysis with impulse hammer excitation. Starting from the fourth normal mode, differences arise due to the form of excitation. Both measurements are performed and compared with each other on each pose with brakes applied as well as with active control.


Sign in / Sign up

Export Citation Format

Share Document