Slippage effects on the crack behavior of pearlitic steel induced via rolling-sliding friction

Wear ◽  
2021 ◽  
pp. 203959
Author(s):  
Yan Zhou ◽  
Zhen-zhen Gui ◽  
Ji-liang Mo ◽  
Jin-fang Peng ◽  
Zhi-biao Xu ◽  
...  
Wear ◽  
2016 ◽  
Vol 362-363 ◽  
pp. 8-17 ◽  
Author(s):  
Y. Zhou ◽  
J.F. Peng ◽  
Z.P. Luo ◽  
B.B. Cao ◽  
X.S. Jin ◽  
...  

Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


Alloy Digest ◽  
2003 ◽  
Vol 52 (10) ◽  

Abstract Kaiser Aluminum alloy 4026 has high strength and good wear resistance, as well as galling resistance. It was developed for sliding friction resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating. Filing Code: AL-385. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2020 ◽  
pp. 260-266
Author(s):  
V.E. Arkhipov ◽  
T.I. Murav’eva ◽  
M.S. Pugachev ◽  
O.O. Shcherbakova

The problems of changes in the coating structure depending on the composition of the sprayed mechanical mixture using copper particles and mixture of copper and zinc particles (" brass") and the effect of structural factors on the tribological properties of the deposited metal layer are considered. The results of X-ray structural, phase, chemical and durometric analyzes, as well as tribological testing of coatings are presented. It is found that structure with hardness of ≈102.7 HV is formed in the coating from mechanical mixture of particles of copper and aluminum oxide (corundum). Numerous pores are observed in the structure of the deposited metal layer, the main size of which does not exceed 2 μm. In the coating from mechanical mixture of particles copper, zinc and aluminum oxide (corundum), structure is formed based on copper with hardness of ≈106.5 HV, zinc — ≈49.7 HV, intermetallic compounds (γ- and ε-phases) — ≈168.7 HV, the mass fraction of which is 62.0, 7.9 and 24.2 %, respectively. Both coatings can be used in sliding friction pairs.


Sign in / Sign up

Export Citation Format

Share Document