Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution

Wear ◽  
2021 ◽  
pp. 203975
Author(s):  
Jian Pu ◽  
Yali Zhang ◽  
Xiaogang Zhang ◽  
Xinlu Yuan ◽  
Pingdi Ren ◽  
...  
2015 ◽  
Vol 30 (6) ◽  
pp. 627
Author(s):  
YE Zuo-Yan ◽  
LIU Dao-Xin ◽  
LI Chong-Yang ◽  
ZHANG Xiao-Hua ◽  
ZANG Xiao-Ming ◽  
...  

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Huiling Zhou ◽  
Fanglian Fu ◽  
Zhixin Dai ◽  
Yanxin Qiao ◽  
Jian Chen ◽  
...  

The 6061-T6 aluminum alloy welding joints were fabricated using gas metal arc welding (GMAW) of various laser powers, and the effect of laser power on the microstructure evolution of the welding joints was investigated. The corrosion behaviors of 6061-T6 aluminum alloy welding joints were investigated in 3.5 wt% NaCl solution using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the micro-galvanic corrosion initiation from Mg2Si or around the intermetallic particles (Al-Fe-Si) is observed after the immersion test due to the inhomogeneous nature of the microstructure. The preferential dissolution of the Mg2Si and Al-Fe-Si is believed to be the possible cause of pitting corrosion. When the laser power reached 5 kW, the microstructure of the welded joint mainly consisted of Al-Fe-Si rather than the Mg2Si at 2 kW. The relatively higher content of Al-Fe-Si with increasing in laser power would increase the volume of corrosion pits.


1980 ◽  
Vol 16 (1) ◽  
pp. 20-23
Author(s):  
V. P. Batrakov ◽  
V. P. Zhilikov ◽  
V. V. Kafel'nikov ◽  
B. E. Kornaukhov

2002 ◽  
Vol 52 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Mitsuaki KATOH ◽  
Kazumasa NISHIO ◽  
Tomiko YAMAGUCHI ◽  
Hirofumi OKANO

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 578 ◽  
Author(s):  
C. Panagopoulos ◽  
Emmanuel Georgiou ◽  
K. Giannakopoulos ◽  
P. Orfanos

In this work, the effect of pH (3, 7 and 10) on the stress corrosion cracking behavior of 6082 aluminum alloy, in a 0.3 M sodium chloride (NaCl) aqueous based solution was investigated. The stress corrosion cracking behavior was studied with slow strain rate testing, whereas failure analysis of the fractured surfaces was used to identify the dominant degradation mechanisms. The experimental results clearly indicated that stress corrosion cracking behavior of this aluminum alloy strongly depends on the pH of the solution. In particular, the highest drop in ultimate tensile strength and ductility was observed for the alkaline pH, followed by the acidic, whereas the lowest susceptibility was observed in the neutral pH environment. This observation is attributed to a change in the dominant stress corrosion cracking mechanisms.


Sign in / Sign up

Export Citation Format

Share Document