Epileptic Zone Resection for Magnetic Resonance Imaging–Negative Refractory Epilepsy Originating from the Primary Motor Cortex

2017 ◽  
Vol 102 ◽  
pp. 434-441 ◽  
Author(s):  
Guangming Zhang ◽  
Dawei Meng ◽  
Yanwu Liu ◽  
Kai Yang ◽  
Jianwei Chen ◽  
...  
2002 ◽  
Vol 88 (1) ◽  
pp. 514-519 ◽  
Author(s):  
F. Binkofski ◽  
G. R. Fink ◽  
S. Geyer ◽  
G. Buccino ◽  
O. Gruber ◽  
...  

The mechanisms underlying attention to action are poorly understood. Although distracted by something else, we often maintain the accuracy of a movement, which suggests that differential neural mechanisms for the control of attended and nonattended action exist. Using functional magnetic resonance imaging (fMRI) in normal volunteers and probabilistic cytoarchitectonic maps, we observed that neural activity in subarea 4p (posterior) within the primary motor cortex was modulated by attention to action, while neural activity in subarea 4a (anterior) was not. The data provide the direct evidence for differential neural mechanisms during attended and unattended action in human primary motor cortex.


Neurology ◽  
1995 ◽  
Vol 45 (5) ◽  
pp. 919-924 ◽  
Author(s):  
S. M. Rao ◽  
J. R. Binder ◽  
T. A. Hammeke ◽  
P. A. Bandettini ◽  
J. A. Bobholz ◽  
...  

2017 ◽  
Vol 41 (5) ◽  
pp. 507-511
Author(s):  
Sang Yoon Lee ◽  
Si Hyun Kang ◽  
Don-Kyu Kim ◽  
Kyung Mook Seo ◽  
Hee Joon Ro ◽  
...  

Background:After amputation, the brain is known to be reorganized especially in the primary motor cortex. We report a case to show changes in the corticospinal tract in a patient with serial bilateral transtibial amputations using diffusion tensor imaging.Case Description and Methods:A 78-year-old man had a transtibial amputation on his left side in 2008 and he underwent a right transtibial amputation in 2011. An initial brain magnetic resonance imaging with a diffusion tensor imaging was performed before starting rehabilitation on his right transtibial prosthesis, and a follow-up magnetic resonance imaging with diffusion tensor imaging was performed 2 years after this.Findings and Outcomes:In the initial diffusion tensor imaging, the number of fiber lines in his right corticospinal tract was larger than that in his left corticospinal tract. At follow-up diffusion tensor imaging, there was no definite difference in the number of fiber lines between both corticospinal tracts.Conclusion:We found that side-to-side corticospinal tract differences were equalized after using bilateral prostheses.Clinical relevanceThis case report suggests that diffusion tensor imaging tractography could be a useful method to understand corticomotor reorganization after using prosthesis in transtibial amputation.


Sign in / Sign up

Export Citation Format

Share Document