scholarly journals Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms

2021 ◽  
Vol 2 (10) ◽  
pp. 100425
Author(s):  
Zhu Shen ◽  
Wenfei Du ◽  
Cecelia Perkins ◽  
Lenn Fechter ◽  
Vanita Natu ◽  
...  
2011 ◽  
Vol 12 (3) ◽  
pp. 392-419 ◽  
Author(s):  
Hans Carl Hasselbalch ◽  
Thomas Stauffer Larsen ◽  
Caroline Hasselbalch Riley ◽  
Morten Krogh Jensen ◽  
Jean-Jacques Kiladjian

2008 ◽  
Vol 32 (10) ◽  
pp. 1638-1640 ◽  
Author(s):  
Marta Fernández-Mercado ◽  
Virginia Cebrián ◽  
Begoña Euba ◽  
Marta García-Granero ◽  
María J. Calasanz ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Cecilia P. Marin Oyarzún ◽  
Agostina Carestia ◽  
Paola R. Lev ◽  
Ana C. Glembotsky ◽  
Miguel A. Castro Ríos ◽  
...  

2018 ◽  
Vol 10 ◽  
pp. e2018058
Author(s):  
Emmanouil Spanoudakis ◽  
Menelaos Papoutselis ◽  
Ioanna Bazntiara ◽  
Eleftheria Lamprianidou ◽  
Xrisa Kordella ◽  
...  

JAK2V617F is a gain of function point mutation that occurs in Myeloproliferative Neoplasm (MPN) patients and deranges their hemopoiesis at cellular level. We speculate that hyperfunctioning JAK2 can modify osteoclast (OCL) homeostasis in MPN patients. We studied 18 newly diagnosed MPN patients and four age-matched normal donors (ND). Osteoclast forming assays started from selected monocytes also and under titrated concentrations of the JAK2 Inhibitor AG-490 (Tyrphostin). Genomic DNA was extracted from the formed osteoclasts, and the JAK2V617F/JAK2WT genomic DNA ratio was calculated. OCLs formed from monocytes derived from heterozygous (Het) for the JAK2V617F mutation MPN patients, were three times more compared to those from JAK2 wild type (WT) MPN patients (p=0,05) and from ND as well (p=0,03). The ratio of JAK2V617F/JAK2WT genomic DNA was increased in OCLs compared to the input monocyte cells showing a survival advantage of the mutated clone. In comparison to ND and JAK2 WT MPN patients, OCLs from patients JAK2V617F (Het) were more susceptible to JAK2 inhibition. These alterations in osteoclast homeostasis, attributed to mutated JAK2, can deregulate the hemopoietic stem cell niche in MPN patients.


2014 ◽  
Vol 38 (4) ◽  
pp. 490-495 ◽  
Author(s):  
Alexander Sidelmann Christensen ◽  
Jonas Bech Møller ◽  
Hans Carl Hasselbalch

2021 ◽  
Author(s):  
Zhu Shen ◽  
Wenfei Du ◽  
Cecelia Perkins ◽  
Lenn Fechter ◽  
Vanita Natu ◽  
...  

Predicting disease natural history remains a particularly challenging endeavor in chronic degenerative disorders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling the spectrum of chronic myeloproliferative neoplasms (MPNs), as a model, we identify the blood platelet transcriptome as a generalizable strategy for highly sensitive progression biomarkers that also enable prediction via machine learning algorithms. Using RNA sequencing (RNA seq), we derive disease relevant gene expression and alternative splicing in purified platelets from 120 peripheral blood samples constituting two independently collected and mutually validating patient cohorts of the three MPN subtypes: essential thrombocythemia, ET (n=24), polycythemia vera, PV (n=33), and primary or post ET/PV secondary myelofibrosis, MF (n=42), as well as healthy donors (n=21). The MPN platelet transcriptome discriminates each clinical phenotype and reveals an incremental molecular reprogramming that is independent of patient driver mutation status or therapy. Leveraging this dataset, in particular the progressive expression gradient noted across MPN, we develop a machine learning model (Lasso-penalized regression) predictive of the advanced subtype MF at high accuracy (AUC-ROC of 0.95-0.96) with validation under two conditions: i) temporal, with training on the first cohort (n=71) and independent testing on the second (n=49) and ii) 10 fold cross validation on the entire dataset. Lasso-derived signatures offer a robust core set of < 10 MPN progression markers. Mechanistic insights from our data highlight impaired protein homeostasis as a prominent driver of MPN evolution, with persistent integrated stress response. We also identify JAK inhibitor-specific signatures and other interferon, proliferation, and proteostasis associated markers as putative targets for MPN-directed therapy. Our platelet transcriptome snapshot of chronic MPNs establishes a methodological foundation for deciphering disease risk stratification and progression beyond genetic data alone, thus presenting a promising avenue toward potential utility in a wide range of age-related disorders.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


Sign in / Sign up

Export Citation Format

Share Document