Chronic Myeloproliferative Neoplasms (Other Than Chronic Myeloid Leukemia)

Author(s):  
Matthew E. Keeney ◽  
Sharathkumar Bhagavathi
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3078-3078
Author(s):  
Caterina Alati ◽  
Bruno Martino ◽  
Antonio Marino ◽  
Francesca Ronco ◽  
Manuela Priolo ◽  
...  

Abstract Abstract 3078 Chronic myeloproliferative neoplasms (CMNs) include Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF). So far limited studies of familial clusters of CMNs have been reported.Familial chronic myeloproliferative neoplasms are defined when in the same pedigree at least two relatives have CMNs. Familial CMNs should be distinguished from inherited disorders with Mendelian transmission, high penetrance and polyclonal haematopoiesis named ‘hereditary erythrocytosis' and ‘hereditary thrombocytosis'. Recently a 5- to 7-fold higher risk of MPN among first-degree relatives of patients with MPNs was reported. These findings support the limited studies suggesting a familial clustering in MPNs. The analysis of mutations of JAK2 and MPL may improve our ability to identify these conditions. In a consecutive series of patients observed in our Institution from January 2000 to June 2010, we found that among 460 patients with sporadic CMNs and 94 Ph1 positive chronic myeloid leukemia (CML), the prevalence of familial cases was 4%.With 22 pedigrees, 44 patients (8%) were identified with two relatives affected. Familial CMNs were 11 PV,14 ET,7 PMF, 5 CML respectively, while sporadic cases were 96 PV,204 ET,115 PMF and with other 45 CMNS not furtherly classified. As far as the distribution of the different CMNs within the familial cluster, We observed that only in 4 of 22 families (18%) all the affected relatives were diagnosed with the same disease (homogeneous pattern: PV one family and ET three families), whereas 14 families exhibited a mixed distribution among PV, ET and PMF. 8 families exhibited CMNs associated with other hematological disease such as chrocic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), myelodisplastic syndrome (MDS). Among this, 6 families presented a first or second degree of relationship of first and second generation. In 10 cases the relatives were brothers, affected by familial CMNs with a prevalence of PV and TE clinical phenotype at diagnosis.According to JAK2 (V617F) mutational status, analyzed in 30 out of 44 patients, 19 patients showed a positivity pattern, while 18 families showed a heterogeneous pattern; they included both JAK2 (V617F) -positive and JAK2 (V617F)-negative patients. Among the 19 patients with JAK2 (V617F) positivity, the distribution of positivity according to the diagnosis was 100% of PV, 45% of ET and 55%of PMF; homozygosity was present only in PV cases. In our series, only two members of the same family were affected by familial CMNs. Finally it should be noted that in our series of familial cases clinical presentation, therapeutic approach and type and severity of complications were comparable to that of sporadic cases. In conclusion, the present study indicates the relevant possibility of familial CMNs, thus suggesting the opportunity of a detailed family history as part of the initial work-up of patients with CMDs; in addition it also suggests the usefulness of an accurate biological study. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 86 (9) ◽  
pp. 811-819 ◽  
Author(s):  
Tariq I. Mughal ◽  
Jerald P. Radich ◽  
Richard A. Van Etten ◽  
Alfonso Quintás-Cardama ◽  
Tomasz Skorski ◽  
...  

Blood ◽  
2014 ◽  
Vol 123 (17) ◽  
pp. 2645-2651 ◽  
Author(s):  
Sa A. Wang ◽  
Robert P. Hasserjian ◽  
Patricia S. Fox ◽  
Heesun J. Rogers ◽  
Julia T. Geyer ◽  
...  

Key Points Within MDS/MPN, the WHO 2008 criteria for aCML identify a subgroup of patients with aggressive clinical features distinct from MDS/MPN-U. The MDS/MPN-U category is heterogeneous, and patient risk can be further stratified by a number of clinicopathological parameters.


2019 ◽  
Vol 55 (03) ◽  
pp. 135-137
Author(s):  
Anil Kumar Tripathi

AbstractChronic myeloid leukemia (CML) is one of the most common myeloproliferative neoplasms characterized by the presence of Philadelphia chromosome, that is, t(9:22), a reciprocal translocation between long arms of chromosomes 9 and 22. In its natural course CML has three phases, that is, chronic phase, accelerated phase, and blast crises phase. Peripheral blood shows marked leukocytosis and left shift. Diagnosis is confirmed by demonstration of specific molecular abnormality by polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH) method or cytogenetics. The drug of choice is tyrosine kinase inhibitor (TKI); imatinib. Other TKIs are dasatinib and nilotinib. Most patients respond and have almost normal life span. However, challenges remain. At present the drug is prescribed for lifelong. Recent studies have shown that the drug may be stopped in certain groups of which around 50% remain in long term remission (operational cure). However, around 20% did not respond and showed resistance. Research is in progress to find out the mechanism of resistance and newer therapeutic modalities or agents.


2021 ◽  
pp. 107815522199164
Author(s):  
Rim Frikha ◽  
Fatma Turki ◽  
Olfa Kassar ◽  
Moez Elloumi ◽  
Hassen Kamoun

Introduction Diagnoses of myeloproliferative disorder is based on molecular marker. Chronic Myeloid Leukemia and Myeloproliferative neoplasms were considered mutually exclusive and co-existence of BCR/ABL1 and JAK2 mutation is a rare phenomenon. Case report Here, we present two cases of co-existence of BCR-ABL and JAK2V617F positivity. We characterize the course of the disease, mainly the minimal residual disease. Management and outcome: The two cases was initially managed as Chronic Myeloid Leukemia and treated by TKI inhibitors. The first one was diagnosed in 2010. He started the first line of TKI, and then switched to second line without obtaining a major molecular response. Hence he was tested for JAK2V617F mutation and positivity was diagnosed. The second patient showed Chronic Myeloid Leukemia phenotype with coexistence of BCR/ABL1 and JAK2 mutation at diagnosis. Molecular monitoring reveals a high BCR-ABL1 transcript level (20%) at the last follow-up (12 months). Discussion Ours results highlight that JAK2V617F/BCR-ABL double positivity may be a potential marker of resistance in Chronic Myeloid Leukemia and clonal molecular analysis is mandatory to elucidate the mechanism. Moreover, the combination of JAK and TKI inhibitors might be effective and potentially be guided by molecular monitoring of minimal residual disease.


2021 ◽  
Vol 13 (1) ◽  
pp. e2021062
Author(s):  
Federica Sorà ◽  
Patrizia Chiusolo ◽  
Francesco Autore ◽  
Sabrina Giammarco ◽  
Luca Laurenti ◽  
...  

Abstract   Classification of myeloproliferative neoplasms is based on hematologic, histopathologic and molecular characteristics including the presence of the BCR-ABL1 and JAK2 V617F or MPL and CALR. Although the different gene mutations ought to be mutually exclusive, a number of cases with co-occurring BCR-ABL1 and JAK2 V617F or CALR, have been identified with a frequence of 0.2-2.5%in European population .The tyrosine kinase abnormalities appeared to affect independent subclones because imatinib mesylate (IM) treatment induced Ph+-CML remission whereas the JAK2V617F clone either persisted or clinically expanded  after major response of Ph+-clone. Allogeneic stem cell transplantation is at the present the only potentially curative therapy for these patients after therapy with ruxolitinib and TKI inhibitor. We describe the case of 3 young people treated in our institution for coexistence of BCR/ABL chronic myeloid leukemia and another Philadelphia chromosome negative (Ph−) CMPD. They received ruxolitinib, imatinib/nilotinib and allogeneic transplantation with a safe and efficient results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilma Barcellini ◽  
Bruno Fattizzo

Immune phenomena are increasingly reported in myeloid neoplasms, and include autoimmune cytopenias/diseases and immunodeficiency, either preceding or complicating acute myeloid leukemia, myelodysplastic syndromes (MDS), chronic myeloproliferative neoplasms, and bone marrow failure (BMF) syndromes. Autoimmunity and immunodeficiency are the two faces of a dysregulated immune tolerance and surveillance and may result, along with contributing environmental and genetic factors, in an increased incidence of both tumors and infections. The latter may fuel both autoimmunity and immune activation, triggering a vicious circle among infections, tumors and autoimmune phenomena. Additionally, alterations of the microbiota and of mesenchymal stem cells (MSCs) pinpoint to the importance of a permissive or hostile microenvironment for tumor growth. Finally, several therapies of myeloid neoplasms are aimed at increasing host immunity against the tumor, but at the price of increased autoimmune phenomena. In this review we will examine the epidemiological association of myeloid neoplasms with autoimmune diseases and immunodeficiencies, and the pivotal role of autoimmunity in the pathogenesis of MDS and BMF syndromes, including the paroxysmal nocturnal hemoglobinuria conundrum. Furthermore, we will briefly examine autoimmune complications following therapy of myeloid neoplasms, as well as the role of MSCs and microbiota in these settings.


Sign in / Sign up

Export Citation Format

Share Document