scholarly journals A filterless organic photodetector electrically switchable between visible and infrared detection

2022 ◽  
pp. 100711
Author(s):  
Ning Li ◽  
Naresh Eedugurala ◽  
Jason D. Azoulay ◽  
Tse Nga Ng
2017 ◽  
Vol 45 ◽  
pp. 222-226 ◽  
Author(s):  
Xiaoxiang Xu ◽  
Peng Xu ◽  
Yuying Hao ◽  
Wei Qin

Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


AIP Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 105106 ◽  
Author(s):  
Nong Li ◽  
Ju Sun ◽  
Qingxuan Jia ◽  
Yifeng Song ◽  
Dongwei Jiang ◽  
...  

2012 ◽  
Vol 3 (21) ◽  
pp. 3193-3198 ◽  
Author(s):  
Erin Durke Davis ◽  
Alec Wagner ◽  
Monica McEntee ◽  
Manpreet Kaur ◽  
Diego Troya ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 527
Author(s):  
Waleed Tariq Sethi ◽  
Olivier De Sagazan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Saleh A. Alshebeili

We present an experimental demonstration of a thermoelectric sensor coupled with a nanoantenna as an alternative option for detecting infrared energy. Two nanoantenna design (single element and an array) variations based on Yagi-Uda technology and one separate nano-thermoelectric junction array were fabricated and tested. The nanoantennas were tuned to operate and respond at a center wavelength of 1550 nm (193.5 THz) optical C-band window, but they also exhibited a resonance response when excited by lasers of various wavelengths (650 nm and 940 nm). The radiation-induced electric currents in the nanoantennas, coupled with a nano-thermoelectric sensor, produced a potential difference as per the Seebeck effect. With respect to the uniform thermal measurements of the reference nanoantenna, the experiments confirmed the detection properties of the proposed nanoantennas; the single element detected a peak percentage voltage hike of 28%, whereas the array detected a peak percentage voltage hike of 80% at the center wavelength. Compared to state-of-the-art thermoelectric designs, this was the first time that such peak percentage voltages were experimentally reported following a planar design based on the Seebeck principle.


2021 ◽  
Vol 7 (16) ◽  
pp. eabf7358
Author(s):  
Meng Peng ◽  
Runzhang Xie ◽  
Zhen Wang ◽  
Peng Wang ◽  
Fang Wang ◽  
...  

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W−1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W−1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition–grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.


Sign in / Sign up

Export Citation Format

Share Document