scholarly journals Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells

2021 ◽  
pp. 100229
Author(s):  
Xiaoxi Zhu ◽  
Xiaonan Liu ◽  
Tian Liu ◽  
Yina Wang ◽  
Nida Ahmed ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 719
Author(s):  
Meri Yulvianti ◽  
Christian Zidorn

Cyanogenic glycosides are an important and widespread class of plant natural products, which are however structurally less diverse than many other classes of natural products. So far, 112 naturally occurring cyanogenic glycosides have been described in the phytochemical literature. Currently, these unique compounds have been reported from more than 2500 plant species. Natural cyanogenic glycosides show variations regarding both the aglycone and the sugar part of the molecules. The predominant sugar moiety is glucose but many substitution patterns of this glucose moiety exist in nature. Regarding the aglycone moiety, four different basic classes can be distinguished, aliphatic, cyclic, aromatic, and heterocyclic aglycones. Our overview covers all cyanogenic glycosides isolated from plants and includes 33 compounds with a non-cyclic aglycone, 20 cyclopentane derivatives, 55 natural products with an aromatic aglycone, and four dihydropyridone derivatives. In the following sections, we will provide an overview about the chemical diversity known so far and mention the first source from which the respective compounds had been isolated. This review will serve as a first reference for researchers trying to find new cyanogenic glycosides and highlights some gaps in the knowledge about the exact structures of already described compounds.


2021 ◽  
Author(s):  
Cooper S. Jamieson ◽  
Joshua Misa ◽  
Yi Tang ◽  
John M. Billingsley

The biosynthetic logic employed by Nature in the construction of psychoactive natural products is reviewed, in addition to biological activities, methodologies enabling pathway discovery, and engineering applications.


2005 ◽  
Vol 8 (3) ◽  
pp. 280-291 ◽  
Author(s):  
Kirsten Jørgensen ◽  
Anne Vinther Rasmussen ◽  
Marc Morant ◽  
Allan Holm Nielsen ◽  
Nanna Bjarnholt ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2678
Author(s):  
Karin Jöhrer ◽  
Serhat Sezai Ҫiҫek

A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure–activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity.


Author(s):  
V Bhinu ◽  
Sanjay Swarup ◽  
Kothandarman Narasimhan

mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Sylvia Kunakom ◽  
Alessandra S. Eustáquio

ABSTRACT The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products—including inadequate supply and difficulties with structure diversification—contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.


Sign in / Sign up

Export Citation Format

Share Document