scholarly journals Intestinal organoid co-culture protocol to study cell competition in vitro

2022 ◽  
Vol 3 (1) ◽  
pp. 101050
Author(s):  
Sanne M. van Neerven ◽  
Rana Ramadan ◽  
Milou S. van Driel ◽  
David J. Huels ◽  
Louis Vermeulen
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuki Fujimichi ◽  
Kensuke Otsuka ◽  
Masanori Tomita ◽  
Toshiyasu Iwasaki

AbstractStem cell competition could shed light on the tissue-based quality control mechanism that prevents carcinogenesis. To quantitatively evaluate stem cell competition in vitro, we developed a two-color intestinal organoid forming system. First, we improved a protocol of culturing organoids from intestinal leucine-rich-repeat containing G-protein-coupled receptor 5 (Lgr5)- enhanced green fluorescent protein (EGFP)high stem cells directly sorted on Matrigel without embedding. The organoid-forming potential (OFP) was 25% of Lgr5-EGFPhigh cells sorted at one cell per well. Using this culture protocol with lineage tracing, we established a two-color organoid culture system by mixing stem cells expressing different fluorescent colors. To analyze stem cell competition, two-color organoids were formed by mixing X-ray-irradiated and non-irradiated intestinal stem cells. In the two-color organoids, irradiated stem cells exhibited a growth disadvantage, although the OFP of irradiated cells alone did not decrease significantly from that of non-irradiated cells. These results suggest that stem cell competition can be evaluated quantitively in vitro using our new system.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Nathan T Henderson ◽  
Sylvain J Le Marchand ◽  
Martin Hruska ◽  
Simon Hippenmeyer ◽  
Liqun Luo ◽  
...  

Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons.


HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 278-281 ◽  
Author(s):  
Natalia R. Dolce ◽  
Luis A. Mroginski ◽  
Hebe Y. Rey

An in vitro culture protocol was developed that increased the germination percentage and decreased the lag time to germination for Ilex dumosa R. pyrenes as a tool for replacing the laborious task of embryo rescue technique. This method involves transversely cutting surface-sterilized pyrenes with a scalpel blade, then placing the micropylar one-third end with the rudimentary embryo (≈0.25 mm long) on solidified (agar 0.65%) quarter-strength salts and vitamins of Murashige and Skoog, 1962 medium with 3% sucrose, and incubating in a growth room at 27 ± 2 °C with a 14-h photoperiod (116 μmol·m−2·s−1). Most of the cut pyrenes (greater than 50%) germinated within the first month after inoculation and achieved maximum germination (≈70%) in 2 months compared with whole pyrenes, which began to germinate 3 months after sowing and required more than 8 months for maximum germination (37%). Moreover, the germination percentage of cut pyrenes was significantly higher than the germination of isolated embryos (34%). Thus, the cut pyrenes culture is a simpler and more effective technique than embryo rescue. Easily, on average, a trained operator is able to culture ≈1000 cut pyrenes per day instead of ≈100 isolated embryos.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Faidruz Azura Jam ◽  
Takao Morimune ◽  
Atsushi Tsukamura ◽  
Ayami Tano ◽  
Yuya Tanaka ◽  
...  

Abstract Cell competition is a cell–cell interaction mechanism which maintains tissue homeostasis through selective elimination of unfit cells. During early brain development, cells are eliminated through apoptosis. How cells are selected to undergo elimination remains unclear. Here we aimed to identify a role for cell competition in the elimination of suboptimal cells using an in vitro neuroepithelial model. Cell competition was observed when neural progenitor HypoE-N1 cells expressing RASV12 were surrounded by normal cells in the co-culture. The elimination through apoptosis was observed by cellular changes of RASV12 cells with rounding/fragmented morphology, by SYTOX blue-positivity, and by expression of apoptotic markers active caspase-3 and cleaved PARP. In this model, expression of juvenility-associated genes Srsf7 and Ezh2 were suppressed under cell-competitive conditions. Srsf7 depletion led to loss of cellular juvenescence characterized by suppression of Ezh2, cell growth impairment and enhancement of senescence-associated proteins. The cell bodies of eliminated cells were engulfed by the surrounding cells through phagocytosis. Our data indicates that neuroepithelial cell competition may have an important role for maintaining homeostasis in the neuroepithelium by eliminating suboptimal cells through loss of cellular juvenescence.


BMC Cancer ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren MF Merlo ◽  
Rachelle E Kosoff ◽  
Kristin L Gardiner ◽  
Carlo C Maley

1992 ◽  
Vol 117 (2) ◽  
pp. 313-316 ◽  
Author(s):  
A. Raymond Miller ◽  
Joseph C. Scheereus ◽  
Patricia S. Erb ◽  
Craig K. Chandler

A tissue culture protocol was developed that increased the germination percentage and decreased the lag time to germination for strawberry (Fragaria x ananassa Duch.) achenes. This technique involved cutting surface-sterilized achenes across the embryo axis then placing the shoot apex/radicle-containing sections on semisolid Murashige and Skoog medium lacking hormones. Cut achenes began germinating 5 days after culture and achieved maximum germination (97% to 100%) in less than 2 weeks, compared to whole achenes, which began to germinate 7 to 10 days after sowing and required more than 7 weeks for maximum germination (<50%). Enhanced germination of cut achenes was a general phenomenon since achenes from 231 hybrid crosses responded similarly. Following placement on culture medium, cut achenes could be stored up to 8 weeks at 4C then removed to 27C, where germination and seedling development occurred at percentages and rates comparable to freshly cut achenes. Achenes did not require stratification before cutting to exhibit increased germination. Nearly 100% of the achenes from freshly harvested red-ripe, pink and white strawberries germinated after cutting and culture, although cut achenes from white and pink berries germinated more slowly than those from red-ripe berries. Achenes from green berries, whether whole or cut, did not germinate. This method of “embryo rescue” could be used to generate more seedlings from poorly germinating hybrid crosses, would considerably decrease the time from sowing to seedling production compared to traditional means, and would produce seedlings of uniform age for subsequent field evaluation.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari ◽  
C. P. Ravindran

A tissue culture protocol was developed for an important medicinal plantRungia pectinataL. in the present study. Nodal shoots were used as explants and surface-sterilized with 0.1% HgCl2solution. Murashige and Skoog (MS) medium was used to establish the cultures ofR. pectinata. The bud break was reported on MS medium supplemented with 1.0 mg L−16-benzylaminopurine (BAP). About 98% response was observed with this media combination and maximum 3.2 shoots per explant with 4.3 cm length were recorded. The shoots were further multiplied using MS medium augmented with 0.5 mg L−1each of BAP and kinetin (Kin) + 0.1 mg L−1indole-3 acetic acid (IAA). Maximum 13.2 shoots per explant with 5.2 cm length were observed. All the shoots were rooted (4.9 roots per shoot with 3.5 cm length) on half strength MS medium fortified with 2.0 mg L−1indole-3 butyric acid (IBA).In vitroflowering was induced from the shoots on half strength MS medium supplemented with same concentrations and combinations of growth regulators used for shoot multiplication under 12/12 hr light/dark photoperiod. The plantlets were hardened in the greenhouse for two months and finally transferred to the field. The foliar micromorphological studies revealed the developmental changes in stomata, vein density, and trichomes during the culture of shoots underin vitroconditions.


Sign in / Sign up

Export Citation Format

Share Document