scholarly journals Normal and tumor-derived organoids as a drug screening platform for tumor-specific drug vulnerabilities

2022 ◽  
Vol 3 (1) ◽  
pp. 101079
Author(s):  
Camilla Calandrini ◽  
Jarno Drost
2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi83-vi83
Author(s):  
Gerhard Jungwirth ◽  
Adrian Paul ◽  
Cao Junguo ◽  
Andreas Unterberg ◽  
Amir Abdollahi ◽  
...  

Abstract Tumor-organoids (TO) are mini-tumors generated from tumor tissue preserving its genotype and phenotype by maintaining the cellular heterogeneity and important components of the tumor microenvironment. We recently developed a protocol to reliably establish TOs from meningioma (MGM) in large quantities. The use of TOs in combination with lab automation holds great promise for drug discovery and screening of comprehensive drug libraries. This might help to tailor patient-specific therapy in the future. The aim of our study was to establish an automated drug screening platform utilizing TOs. For this purpose, we established TOs by controlled reaggregation of freshly prepared single cell suspension of MGM tissue samples in the high-throughput format of 384-well plates. The drug screening was performed fully automated by utilizing the robotic liquid handler Hamilton Microlab STAR and a drug library containing 166 FDA-approved oncology agents. Viability was assessed with CellTiterGlo3D. In total, we performed the drug screening with 166 drugs on TOs from 11 patients suffering from MGM (n=8 WHO°I, n=2 WHO°II, n=1 WHO°III). The top five most effective drugs resulted in a decrease of TO viability ranging from 84.6–63.3%. K-means clustering analysis resulted in groupings of drugs with similar modes of action. One cluster consisted of epigenetic drugs while another cluster consisted of several proteasome inhibitors. However, when looking at a patient-individual level, in 11 patients 44 of 166 drugs, were among the top 10 most effective drugs, providing strong evidence for heterogeneous drug-responses in MGM patients. Taken together, we successfully developed an automated drug screening platform pipeline utilizing TOs from MGM to identify patient-specific drug-responses. The observed intra-individual differences of drug responses mandate for a personalized testing of comprehensive drug libraries in TOs to tailor more effective therapies in MGM patients.


2020 ◽  
Author(s):  
Alexandra Lubin ◽  
Jason Otterstrom ◽  
Yvette Hoade ◽  
Ivana Bjedov ◽  
Eleanor Stead ◽  
...  

AbstractZebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed a easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan®Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft®Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high content screening in zebrafish.


2014 ◽  
Vol 59 (2) ◽  
pp. 753-762 ◽  
Author(s):  
Anita Ordas ◽  
Robert-Jan Raterink ◽  
Fraser Cunningham ◽  
Hans J. Jansen ◽  
Malgorzata I. Wiweger ◽  
...  

ABSTRACTThe translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data fromMycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models ofin vivoMycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrew Riley ◽  
Victoria Green ◽  
Ramsah Cheah ◽  
Gordon McKenzie ◽  
Laszlo Karsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document