scholarly journals Jussara ( Euterpe edulis Mart.) supplementation during pregnancy and lactation modulates UCP-1 and inflammation biomarkers induced by trans-fatty acids in the brown adipose tissue of offspring

2017 ◽  
Vol 12 ◽  
pp. 50-65 ◽  
Author(s):  
Perla Pizzi Argentato ◽  
Carina Almeida Morais ◽  
Aline Boveto Santamarina ◽  
Helena de Cássia César ◽  
Débora Estadella ◽  
...  
2018 ◽  
Vol 120 (6) ◽  
pp. 619-627 ◽  
Author(s):  
Perla P. Argentato ◽  
Helena de Cássia César ◽  
Débora Estadella ◽  
Luciana P. Pisani

AbstractBrown adipose tissue (BAT) has recently been given more attention for the part it plays in obesity. BAT can generate great amounts of heat through thermogenesis by the activation of uncoupling protein 1 (UCP-1), which can be regulated by many environmental factors such as diet. Moreover, the build-up of BAT relates to maternal nutritional changes during pregnancy and lactation. However, at present, there is a limited number of studies looking at maternal nutrition and BAT development, and it seems that the research trend in this field has been considerably declining since the 1980s. There is much to discover yet about the role of different fatty acids on the development of BAT and the activation of UCP-1 during the fetal and the postnatal periods of life. A better understanding of the impact of nutritional intervention on the epigenetic regulation of BAT could lead to new preventive care for metabolic diseases such as obesity. It is important to know in which circumstances lipids could programme BAT during pregnancy and lactation. The modification of maternal dietary fatty acids, amount and composition, during pregnancy and lactation might be a promising strategy for the prevention of obesity in the offspring and future generations.


1995 ◽  
Vol 20 (6) ◽  
pp. 477-484 ◽  
Author(s):  
Akihiro Kuroshima ◽  
Tomie Ohno ◽  
Mitsuru Moriya ◽  
Hiroshi Ohinata ◽  
Takehiro Yahata ◽  
...  

2013 ◽  
Vol 6 (3) ◽  
pp. 121-133 ◽  
Author(s):  
Eamon P. Breen ◽  
Wayne Pilgrim ◽  
Kieran J. Clarke ◽  
Cristy Yssel ◽  
Mark Farrell ◽  
...  

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1703-1703
Author(s):  
Yang Yang ◽  
Xinyun Xu ◽  
Katie Graham ◽  
Ahmed Bettaieb ◽  
Christophe Morisseau ◽  
...  

Abstract Objectives Brown adipose tissue (BAT), responsible for energy expenditure through nonshivering thermogenesis, has emerged as a novel target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH), encoded by Ephx2 gene, is a cytosolic enzyme that converts epoxy fatty acids (EpFAs) that are produced by cytochrome P-450 enzymes from polyunsaturated fatty acids into less active diols. Pharmacological inhibitors of sEH, such as trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), have been shown to be beneficial for chronic diseases by inhibiting the degradation of EpFAs. We have previously shown that t-TUCB dose-dependently promotes brown adipogenesis in vitro. This study investigated the therapeutic effects of t-TUCB on BAT activation in diet-induced obese mice. Methods Male C57BL6/J mice were fed a high-fat diet (60% kcal from fat) for 8 weeks followed by random assignment into either the control or t-TUCB group (n = 10 per group) to receive either the vehicle control or t-TUCB (3 mg/kg/day) via osmotic minipump delivery at the subcutaneous area near the interscapular BAT for 6 weeks. Bodyweight and food intake, glucose and insulin tolerance tests, cold tolerance tests, and indirect calorimetry were measured before the mice were euthanized for further biochemical analysis. Results sEH inhibition by t-TUCB in the obese mice did not change body weight, fat pad weight, food intake, fasting blood glucose, glucose and insulin tolerance, or cold tolerance, but significantly decreased blood triglyceride levels and increased heat production during both day and night. Moreover, t-TUCB significantly increased protein expression of brown marker gene PGC-1alpha and lipid droplet-associated protein perilipin (PLIN), but not uncoupling protein 1 (UCP1), in the interscapular BAT of diet-induced obese mice. Conclusions Our results suggest that sEH pharmacological inhibition may be beneficial for BAT activation by increasing mitochondrial biogenesis and lipolysis in the BAT. Further studies using the sEH inhibitors and/or EpFA generating diets for obesity treatment and prevention are warranted. Funding Sources The work was supported by NIH 1R15DK114790–01A1 (to L.Z.), K99DK100736 and R00DK100736 (to A.B.), R15AT008733 (to S.W.), R35 ES030443 and P42ES004699 (to B.D.H).


2015 ◽  
Vol 15 (2) ◽  
pp. 38-42
Author(s):  
Ch Khorolmaa ◽  
Sh Demberel ◽  
B Battsetseg ◽  
G Gereltsetseg ◽  
S Andrei

Brown adipose tissue in newborn lambs accounts for 4.52% of total body weight, then during postpartum period it intensively decreases, reaching 1.5% after a week, and finally it is gradually adsorbed or replaced with white adipose tissue. Fatty acids composition of lamb brown adipose tissue includes 17 unsaturated fatty acids (53.23%) and 11 saturated ones (46.95%).Mongolian Journal of Agricultural Sciences Vol.15(2) 2015; 38-42


Sign in / Sign up

Export Citation Format

Share Document