scholarly journals Normal newt limb regeneration requires matrix metalloproteinase function

2005 ◽  
Vol 279 (1) ◽  
pp. 86-98 ◽  
Author(s):  
Vladimir Vinarsky ◽  
Donald L. Atkinson ◽  
Tamara J. Stevenson ◽  
Mark T. Keating ◽  
Shannon J. Odelberg
2006 ◽  
Vol 235 (3) ◽  
pp. 606-616 ◽  
Author(s):  
Tamara J. Stevenson ◽  
Vladimir Vinarsky ◽  
Donald L. Atkinson ◽  
Mark T. Keating ◽  
Shannon J. Odelberg

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 205
Author(s):  
Gang Ye ◽  
Yalong Feng ◽  
Zhaoxiang Mi ◽  
Du Wang ◽  
Shuai Lin ◽  
...  

c-Fos is an immediate-early gene that modulates cellular responses to a wide variety of stimuli and also plays an important role in tissue regeneration. However, the sequence and functions of c-Fos are still poorly understood in newts. This study describes the molecular cloning and characterization of the c-Fos gene (Co-c-Fos) of the Chinese fire-bellied newt, Cynops orientalis. The full-length Co-c-Fos cDNA sequence consists of a 1290 bp coding sequence that encoded 429 amino acids. The alignment and phylogenetic analyses reveal that the amino acid sequence of Co-c-Fos shared a conserved basic leucine zipper domain, including a nuclear localization sequence and a leucine heptad repeat. The Co-c-Fos mRNA is widely expressed in various tissues and is highly and uniformly expressed along the newt limb. After limb amputation, the expression of Co-c-Fos mRNA was immediately upregulated, but rapidly declined. However, the significant upregulation of Co-c-Fos protein expression was sustained for 24 h, overlapping with the wound healing stage of C. orientalis limb regeneration. To investigate if Co-c-Fos participate in newt wound healing, a skin wound healing model is employed. The results show that the treatment of T-5224, a selective c-Fos inhibitor, could largely impair the healing process of newt’s skin wound, as well as the injury-induced matrix metalloproteinase-3 upregulation, which is fundamental to wound epithelium formation. These data suggest that Co-c-Fos might participate in wound healing by modulating the expression of its potential target gene matrix metalloproteinase-3. Our study provides important insights into mechanisms that are responsible for the initiation of newt limb regeneration.


2016 ◽  
Vol 129 (1) ◽  
pp. 276-280
Author(s):  
Kaoru Nomura ◽  
Yasushi Tanimoto ◽  
Fumio Hayashi ◽  
Erisa Harada ◽  
Xiao-Yuan Shan ◽  
...  

Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1397-1407 ◽  
Author(s):  
H.G. Simon ◽  
C.J. Tabin

Adult urodele amphibians can regenerate their limbs and tail. Based on their roles in other developing systems, Hox genes are strong candidates for genes that play a role in regulating pattern formation during regeneration. There are four homologous clusters of Hox genes in vertebrate genomes. We isolated cDNA clones of two newt homeobox genes from homologous positions within two Hox clusters; Hox-4.5 and Hox-3.6. We used RNase protection on nonamputated (normal) and regenerating newt appendages and tissue to compare their transcriptional patterns. Both genes show increased expression upon amputation with similar kinetics. Hox-4.5 and Hox-3.6 transcription is limited to the mesenchymal cells in the regenerates and is not found in the epithelial tissue. In addition to regenerating appendages, both genes are transcriptionally active in adult kidney of the newt. Striking differences were found in the regulation of Hox-4.5 and Hox-3.6 when they were compared in unamputated limbs and in regenerating forelimbs versus regenerating hindlimbs. Hox-4.5 is expressed in the blastema of regenerating fore- and hindlimbs, but Hox-4.5 transcripts are not detectable in normal limbs. In contrast, Hox-3.6 transcripts are found exclusively in posterior appendages, but are present in normal as well as regenerating hindlimbs and tails. Hox-4.5 is also expressed at a higher level in proximal (mid-humerus) regenerates than in distal ones (mid-radius). When we proximalized the positional memory of a distal blastema with retinoic acid, we find that the early expression level of Hox-4.5 is also proximalized. When the expression of these genes is compared to the expression of two previously reported newt Hox genes, a consistent pattern emerges, which can be interpreted in terms of differential roles for the different Hox clusters in determining regenerative limb morphology.


1991 ◽  
Vol 148 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Hiroaki Onda ◽  
Matthew L. Poulin ◽  
Roy A. Tassava ◽  
Ing-Ming Chiu

2000 ◽  
Vol 218 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Anoop Kumar ◽  
Cristiana P. Velloso ◽  
Yutaka Imokawa ◽  
Jeremy P. Brockes

2016 ◽  
Vol 56 (1) ◽  
pp. 270-274 ◽  
Author(s):  
Kaoru Nomura ◽  
Yasushi Tanimoto ◽  
Fumio Hayashi ◽  
Erisa Harada ◽  
Xiao-Yuan Shan ◽  
...  

Development ◽  
1983 ◽  
Vol 76 (1) ◽  
pp. 217-234
Author(s):  
Emile Lheureux

An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. Non-irradiated epidermis is brought to the stump with a skin graft but not with a muscle graft. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. A cytophotometrical analysis of DNA content of the epidermis cell nuclei sampled from the skin of the regenerate was undertaken to detect a migration of triploid epidermal cells. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Previous experiments involving transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump were carried out again but on animals which had been entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop.


Sign in / Sign up

Export Citation Format

Share Document