Control of the blastemal cell cycle by the peripheral nervous system during newt limb regeneration; continuous labeling analysis

1985 ◽  
Vol 55 (1-2) ◽  
pp. 107-111 ◽  
Author(s):  
B. Boilly ◽  
M. Oudkhir ◽  
B. Lassalle
2017 ◽  
Vol 40 (6) ◽  
pp. 608-617.e6 ◽  
Author(s):  
Ines Wagner ◽  
Heng Wang ◽  
Philipp M. Weissert ◽  
Werner L. Straube ◽  
Anna Shevchenko ◽  
...  

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 673-690 ◽  
Author(s):  
H.E. Richardson ◽  
L.V. O'Keefe ◽  
S.I. Reed ◽  
R. Saint

We have isolated a Drosophila homolog of the human G1-specific cyclin E gene. Cyclin E proteins thus constitute an evolutionarily conserved subfamily of metazoan cyclins. The Drosophila cyclin E gene, DmcycE, encodes two proteins with a common C-terminal region and unique N-terminal regions. Unlike other Drosophila cyclins, DmcycE exhibits a dynamic pattern of expression during development. DmcycE is supplied maternally, but at the completion of the cleavage divisions and prior to mitosis 14, the maternal transcripts are rapidly degraded in all cells except the pole (germ) cells. Two modes of DmcycE expression are observed in the subsequent divisions. During cycles 14, 15 and 16 in non-neural cells, DmcycE mRNA levels show no cell-cycle-associated variation. DmcycE expression in these cells is therefore independent of the cell cycle phase. In contrast, expression in proliferating embryonic peripheral nervous system cells occurs during interphase as a brief pulse that initiates before and overlaps with S phase, demonstrating the presence of a G1 phase in these embryonic neural cell cycles. DmcycE appears not to be expressed in cells that undergo endoreplication cycles during polytenization. The structural homology to human cyclin E, the ability of DmcycE to rescue a G1 cyclin-deficient yeast strain, the presence of multiple PEST sequences characteristic of G1-specific cyclins and expression during G1 phase in proliferating peripheral nervous system cells all argue that Drosophila cyclin E is a G1 cyclin. Constitutive DmcycE expression in embryonic cycles lacking a G1 phase, in contrast to expression during the G1-S phase transition in cycles exhibiting a G1 phase, implicates DmcycE expression in the regulation of the G1 to S phase transition during Drosophila embryogenesis.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2000 ◽  
Vol 5 (2) ◽  
pp. 3-3
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) describes procedures for rating upper extremity neural deficits in Chapter 3, The Musculoskeletal System, section 3.1k; Chapter 4, The Nervous System, section 4.4 provides additional information and an example. The AMA Guides also divides PNS deficits into sensory and motor and includes pain within the former. The impairment estimates take into account typical manifestations such as limited motion, atrophy, and reflex, trophic, and vasomotor deficits. Lesions of the peripheral nervous system may result in diminished sensation (anesthesia or hypesthesia), abnormal sensation (dysesthesia or paresthesia), or increased sensation (hyperesthesia). Lesions of motor nerves can result in weakness or paralysis of the muscles innervated. Spinal nerve deficits are identified by sensory loss or pain in the dermatome or weakness in the myotome supplied. The steps in estimating brachial plexus impairment are similar to those for spinal and peripheral nerves. Evaluators should take care not to rate the same impairment twice, eg, rating weakness resulting from a peripheral nerve injury and the joss of joint motion due to that weakness.


2004 ◽  
Author(s):  
G. Galietta ◽  
A. Capasso ◽  
A. Fortuna ◽  
F. Fabi ◽  
P. Del Basso ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 11-14
Author(s):  
O. S. Levin ◽  
O. V. Matvievskaya

The article contains a comprehensive analysis of the summary epidemiological data obtained during the observational study to assess the effect of therapy with Ipigrix® on the dynamics of motor and sensory functions, as well as the severity of pain in outpatient patients with various diseases of the peripheral nervous system: mononeuropathy, polyneuropathy and polyradiculopathy of various origins.


Sign in / Sign up

Export Citation Format

Share Document