scholarly journals Sonic Hedgehog and Retinoic Acid are not sufficient to induce motoneuron generation in the avian caudal neural tube

2005 ◽  
Vol 279 (2) ◽  
pp. 356-367 ◽  
Author(s):  
Nuno D. Afonso ◽  
Martin Catala
Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Maden ◽  
D.E. Ong ◽  
F. Chytil

We have analysed the distribution of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the day 8.5-day 12 mouse and rat embryo. CRBP is localised in the heart, gut epithelium, notochord, otic vesicle, sympathetic ganglia, lamina terminalis of the brain, and, most strikingly, in a ventral stripe across the developing neural tube in the future motor neuron region. This immunoreactivity remains in motor neurons and, at later stages, motor axons are labelled in contrast to unlabelled sensory axons. CRABP is localised to the neural crest cells, which are particularly noticeable streaming into the branchial arches. At later stages, neural crest derivatives such as Schwann cells, cells in the gut wall and sympathetic ganglia are immunoreactive. An additional area of CRABP-positive cells are neuroblasts in the mantle layer of the neural tube, which subsequently appear to be the axons and cell bodies of the commissural system. Since retinol and retinoic acid are the endogenous ligands for these binding proteins, we propose that retinoids may play a role in the development and differentiation of the mammalian nervous system and may interact with certain homoeobox genes whose transcripts have also been localised within the nervous system.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 333-342 ◽  
Author(s):  
S. Pons ◽  
E. Marti

Patterning of the vertebrate neural tube depends on intercellular signals emanating from sources such as the notochord and the floor plate. The secreted protein Sonic hedgehog and the extracellular matrix protein Vitronectin are both expressed in these signalling centres and have both been implicated in the generation of ventral neurons. The proteolytic processing of Sonic hedgehog is fundamental for its signalling properties. This processing generates two secreted peptides with all the inducing activity of Shh residing in the highly conserved 19 kDa amino-terminal peptide (N-Shh). Here we show that Vitronectin is also proteolitically processed in the embryonic chick notochord, floor plate and ventral neural tube and that this processing is spatiotemporally correlated with the generation of motor neurons. The processing of Vitronectin produces two fragments of 54 kDa and 45 kDa, as previously described for Vitronectin isolated from chick yolk. The 45 kDa fragment lacks the heparin-binding domain and the integrin-binding domain, RGD, present in the non-processed Vitronectin glycoprotein. Here we show that N-Shh binds to the three forms of Vitronectin (70, 54 and 45 kDa) isolated from embryonic tissue, although is preferentially associated with the 45 kDa form. Furthermore, in cultures of dissociated neuroepithelial cells, the combined addition of N-Shh and Vitronectin significantly increases the extent of motor neuron differentiation, as compared to the low or absent inducing capabilities of either N-Shh or Vitronectin alone. Thus, we conclude that the differentiation of motor neurons is enhanced by the synergistic action of N-Shh and Vitronectin, and that Vitronectin may be necessary for the proper presentation of the morphogen N-Shh to one of its target cells, the differentiating motor neurons.


Teratology ◽  
1990 ◽  
Vol 41 (3) ◽  
pp. 257-274 ◽  
Author(s):  
Yoshiko Yasuda ◽  
Hiroyoshi Konishi ◽  
Takahide Kihara ◽  
Takashi Tanimura

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2271-2282 ◽  
Author(s):  
Felix A. Mic ◽  
Robert J. Haselbeck ◽  
Arnold E. Cuenca ◽  
Gregg Duester

Retinoid control of vertebrate development depends upon tissue-specific metabolism of retinol to retinoic acid (RA). The RA biosynthetic enzyme RALDH2 catalyzes much, but not all, RA production in mouse embryos, as revealed here with Raldh2 null mutants carrying an RA-responsive transgene. Targeted disruption of Raldh2 arrests development at midgestation and eliminates all RA synthesis except that associated with Raldh3 expression in the surface ectoderm of the eye field. Conditional rescue of Raldh2–/– embryos by limited maternal RA administration allows development to proceed and results in the establishment of additional sites of RA synthesis linked to Raldh1 expression in the dorsal retina and to Raldh3 expression in the ventral retina, olfactory pit and urinary tract. Unexpectedly, conditionally rescued Raldh2–/– embryos also possess novel sites of RA synthesis in the neural tube and heart that do not correspond to expression of Raldh1-3. RA synthesis in the mutant neural tube was localized in the spinal cord, posterior hindbrain and portions of the midbrain and forebrain, whereas activity in the mutant heart was localized in the conotruncus and sinus venosa. In the posterior hindbrain, this novel RA-generating activity was expressed during establishment of rhombomeric boundaries. In the spinal cord, the novel activity was localized in the floorplate plus in the intermediate region where retinoid-dependent interneurons develop. These novel RA-generating activities in the neural tube and heart fill gaps in our knowledge of how RA is generated spatiotemporally and may, along with Raldh1 and Raldh3, contribute to rescue of Raldh2–/– embryos by producing RA locally.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 3889-3897 ◽  
Author(s):  
F. Muller ◽  
S. Albert ◽  
P. Blader ◽  
N. Fischer ◽  
M. Hallonet ◽  
...  

The secreted molecule Sonic hedgehog (Shh) is crucial for floor plate and ventral brain development in amniote embryos. In zebrafish, mutations in cyclops (cyc), a gene that encodes a distinct signal related to the TGF(beta) family member Nodal, result in neural tube defects similar to those of shh null mice. cyc mutant embryos display cyclopia and lack floor plate and ventral brain regions, suggesting a role for Cyc in specification of these structures. cyc mutants express shh in the notochord but lack expression of shh in the ventral brain. Here we show that Cyc signalling can act directly on shh expression in neural tissue. Modulation of the Cyc signalling pathway by constitutive activation or inhibition of Smad2 leads to altered shh expression in zebrafish embryos. Ectopic activation of the shh promoter occurs in response to expression of Cyc signal transducers in the chick neural tube. Furthermore an enhancer of the shh gene, which controls ventral neural tube expression, is responsive to Cyc signal transducers. Our data imply that the Nodal related signal Cyc induces shh expression in the ventral neural tube. Based on the differential responsiveness of shh and other neural tube specific genes to Hedgehog and Cyc signalling, a two-step model for the establishment of the ventral midline of the CNS is proposed.


Sign in / Sign up

Export Citation Format

Share Document