Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques

2015 ◽  
Vol 89 ◽  
pp. 168-172 ◽  
Author(s):  
Anusha N. Seneviratne ◽  
Jennifer E. Cole ◽  
Michael E. Goddard ◽  
Inhye Park ◽  
Zahra Mohri ◽  
...  
Author(s):  
Alina G. van der Giessen ◽  
Jolanda J. Wentzel ◽  
Frans N. van de Vosse ◽  
Antonius F. van der Steen ◽  
Pim J. de Feyter ◽  
...  

It is generally accepted that early atherosclerosis develops in low shear-stress (SS) regions such as the outer wall of arterial bifurcations and the inner bend of curved vessels (1). However, in clinical practice, it is common to observe atherosclerotic plaques at the flow-divider, or carina, of coronary bifurcations (2). Plaques at the carina are more frequently found in symptomatic patients, and may represent a more advanced stage of atherosclerosis. The carina is located in a region which is exposed to high SS. We hypothesize that if plaques are located in atheroprotective high SS regions, they have grown circumferentially from the atherogenic low SS regions.


2013 ◽  
Vol 227 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Vania C. Olivon ◽  
Rodrigo A. Fraga-Silva ◽  
Dolf Segers ◽  
Céline Demougeot ◽  
Ana M. de Oliveira ◽  
...  

Author(s):  
Frank Gijsen ◽  
Jolanda Wentzel ◽  
Johan Schuurbiers ◽  
Frits Mastik ◽  
Johannes Schaar ◽  
...  

It is well established that atherosclerotic plaques generally develop in low shear stress regions, including curved arterial segments and bifurcations1. Once these plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences. We hypothesize that in the more advanced stages of the disease, shear stress has an important impact on plaque composition in such a way that high shear stress enhances plaque vulnerability through its biological impact on the endothelium2. We investigated this hypothesis previously by studying the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries3. In this study, we will extend that study by investigating how shear stress influences changes of strain, and thus plaque composition, over a period of 6 months.


Author(s):  
Scott Albert ◽  
Jenn Stroud Rossmann ◽  
Robert Balaban

The tendency of atherosclerotic plaques to develop at arterial branch points is likely due to both the hemodynamics and macromolecular environment associated with these branch points. Arterial branches experience flow separation, which results in regions of low shear stress[1–3], and contributes to longer residence times that may allow for deposition of pro-atherogenic material in the vessel wall [2]. In addition, low shear stress itself may provide cellular signals that alter the tissue microenvironment in favor of atherogenesis [3, e.g.].


Author(s):  
Frank J. H. Gijsen ◽  
Jolanda J. Wentzel ◽  
Johan C. H. Schuurbiers ◽  
Antonius F. W. van der Steen ◽  
Patrick W. Serruys

It is well established that atherosclerotic plaques generally develop in low shear stress regions, including curved arterial segments and bifurcations. Once these plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences. We hypothesize that in the more advanced stages of the disease, shear stress has an important impact on plaque composition in such a way that high shear stress enhances plaque vulnerability through its biological impact on the endothelium. We investigated this hypothesis by studying the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries.


2021 ◽  
Vol 545 ◽  
pp. 20-26
Author(s):  
AFang Li ◽  
LiLan Tan ◽  
ShuLei Zhang ◽  
Jun Tao ◽  
Zuo Wang ◽  
...  

2008 ◽  
Vol 32 (3) ◽  
pp. S18-S19
Author(s):  
Dang Heng Wei ◽  
Gui Xue Wang ◽  
Yi Ping Xia ◽  
Jian Jun Lei ◽  
Lu Shang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document