Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response

2017 ◽  
Vol 83 ◽  
pp. 228-240 ◽  
Author(s):  
Yuanping Xu ◽  
Jin Zhou ◽  
Long Di ◽  
Chen Zhao
Author(s):  
Bala Murugan S. ◽  
R. K. Behera

Abstract The dynamic analyses of rotating systems are always a testing task to obtain the definite results. This paper carries the dynamic modelling, analysis and identification of coupled flexible rotor system supported by an auxiliary Active Magnetic Bearings (AMBs). An identification algorithm is used to estimate the dynamic parameters of AMB, and rotor residual mass imbalance. The proposed algorithm is a right method for the analysis of fully levitated rotor on AMBs. Finite element method is used to model the dynamic flexible rotor system with PID controller. A conventional dynamic condensation technique is implemented in the development of identification algorithm to overcome the difficulty in numerical simulation. The least-squares fit technique is deployed to estimate the dynamic parameters in frequency domain. Then the algorithm is extended to find the misalignment forces and moments at the coupling point. Numerical study is carried to check the correctness of the algorithm. The proposed algorithm is yet to be tested to experimental results from a fully levitated rotor test rig supported with AMBs.


Author(s):  
Dongxiong Wang ◽  
Nianxian Wang ◽  
Kuisheng Chen

The magnetic suspended dual-rotor system applied in more electric aero-engine can eliminate the wear and lubrication system of mechanical bearings and solve the vibration control issue of system effectively, which provides the possibility to improve the performance of aero-engine significantly. This research focuses on the unbalance response of the magnetic suspended dual-rotor system. First, a structure of dual-rotor system supported by two active magnetic bearings and two permanent magnetic bearings is presented. With proportional derivative (PD) control adopted, the bearing characteristics of active magnetic bearings are modeled as the equivalent stiffness and equivalent damping, and the permanent magnetic bearings are modeled as elastic support. Then, the Riccati transfer matrix method with good numerical stability is used to establish the model of the magnetic suspended dual-rotor system unbalance response. Subsequently, the validity of the present formulation has been tested against some known results available in literature and the simulation results obtained by finite element method (FEM). Finally, the dynamic characteristics of the unbalance response are investigated. The results reveal that the influence of the inner rotor imbalance excitation on the magnetic suspended dual-rotor system unbalance response is much larger than that of the outer rotor imbalance excitation. In addition, the critical speeds increase with the proportional coefficient, and the derivative coefficient can affect the amplitudes of the unbalance response, but not critical speeds. From the perspectives of the maximum bearing capacity and maximum displacement of active magnetic bearing-rotor system, the possibility of the magnetic suspended dual-rotor system safely crossing the critical speeds of the first three orders is investigated.


Sign in / Sign up

Export Citation Format

Share Document