Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty

2021 ◽  
Vol 146 ◽  
pp. 106869
Author(s):  
Qing Guo ◽  
Zhenlei Chen
2012 ◽  
Vol 17 (3) ◽  
pp. 431-444 ◽  
Author(s):  
D. Richert ◽  
K. Masaud ◽  
C. J. B. Macnab

2008 ◽  
Vol 18 (03) ◽  
pp. 219-231 ◽  
Author(s):  
S. SURESH ◽  
N. KANNAN ◽  
N. SUNDARARAJAN ◽  
P. SARATCHANDRAN

In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H∞ control scheme.


2015 ◽  
Vol 13 (1-2) ◽  
pp. 10-24
Author(s):  
Ieroham Baruch ◽  
Edmundo P. Reynaud

Abstract In this work, a Recursive Levenberg-Marquardt learning algorithm in the complex domain is developed and applied in the training of two adaptive control schemes composed by Complex-Valued Recurrent Neural Networks. Furthermore, we apply the identification and both control schemes for a particular case of nonlinear, oscillatory mechanical plant to validate the performance of the adaptive neural controller and the learning algorithm. The comparative simulation results show the better performance of the newly proposed Complex-Valued Recursive Levenberg-Marquardt learning algorithm over the gradient-based recursive Back-propagation one.


Sign in / Sign up

Export Citation Format

Share Document