Implementation of the Average-Log-Ratio ALR gear-damage detection algorithm on gear-fatigue-test recordings

2021 ◽  
Vol 154 ◽  
pp. 107590
Author(s):  
Matthew E. Wagner ◽  
William D. Mark ◽  
Aaron C. Isaacson
Author(s):  
William D Mark

A mathematical model of static-transmission-error frequency-domain contributions caused by a single generic form of gear-tooth damage is used to explain observed behavior of the average-log-ratio (ALR) gear-damage detection algorithm applied to a case of tooth-bending-fatigue damage. The periodic behavior of rotational-harmonic frequency spectra resulting from tooth damage is explained and experimentally verified. Monotonic increases in ALR contributions in the rotational-harmonic region below the tooth-meshing fundamental harmonic are unambiguously related to increasing gear damage by use of Parseval’s theorem for the discrete Fourier transform. Computation of ALR using rotational-harmonic bands between adjacent tooth-meshing harmonics is suggested for early detection of gear damage. Large high-frequency ALR contributions are explained by transmission-error jump (step) discontinuities caused by large tooth-pair deformations, indicating a severe state of damage.


2012 ◽  
Vol 518 ◽  
pp. 174-183 ◽  
Author(s):  
Pawel Malinowski ◽  
Tomasz Wandowski ◽  
Wiesław M. Ostachowicz

In this paper the investigation of a structural health monitoring method for thin-walled parts of structures is presented. The concept is based on the guided elastic wave propagation phenomena. This type of waves can be used in order to obtain information about structure condition and possibly damaged areas. Guided elastic waves can travel in the medium with relatively low attenuation, therefore they enable monitoring of extensive parts of structures. In this way it is possible to detect small defects in their early stage of growth. It is essential because undetected damage can endanger integrity of a structure. In reported investigation piezoelectric transducer was used to excite guided waves in chosen specimens. Dispersion of guided waves results in changes of velocity with the wave frequency, therefore a narrowband signal was used. Measurement of the wave field was realized using laser scanning vibrometer that registered the velocity responses at points belonging to a defined mesh. An artificial discontinuity was introduced to the specimen. The goals of the investigation was to detect it and find optimal sensor placement for this task. Determination of the optimal placement of sensors is a very challenging mission. In conducted investigation laser vibrometer was used to facilitate the task. The chosen mesh of measuring points was the basis for the investigation. The purpose was to consider various configuration of piezoelectric sensors. Instead of using vast amount of piezoelectric sensors the earlier mentioned laser vibrometer was used to gather the necessary data from wave propagation. The signals gather by this non-contact method for the considered network were input to the damage detection algorithm. Damage detection algorithm was based on a procedure that seeks in the signals the damage-reflected waves. Knowing the wave velocity in considered material the damage position can be estimated.


2015 ◽  
Vol 220-221 ◽  
pp. 328-332
Author(s):  
Michal Dziendzikowski ◽  
Krzysztof Dragan ◽  
Artur Kurnyta ◽  
Sylwester Klysz ◽  
Andrzej Leski

The paper presents an approach to develop a system for fatigue crack growth monitoring and early damage detection in the PZL – 130 ORLIK TC II turbo-prop military trainer aircraft structure. The system functioning is based on elastic waves propagation excited in the structure by piezoelectric PZT transducers. In the paper, a built block approach for the system design, signal processing as well as damage detection is presented. Description of damage detection capabilities are delivered in the paper and some issues concerning the proposed signal processing methods and their application to crack growth estimation models are discussed. Selected preliminary results obtained during the Full Scale Fatigue Test thus far are also presented.


2013 ◽  
Vol 18 (11) ◽  
pp. 1227-1238 ◽  
Author(s):  
Brent Phares ◽  
Ping Lu ◽  
Terry Wipf ◽  
Lowell Greimann ◽  
Junwon Seo

2019 ◽  
Vol 19 (4) ◽  
pp. 967-986 ◽  
Author(s):  
Xintian Chi ◽  
Dario Di Maio ◽  
Nicholas AJ Lieven

This research focuses on the development of a damage detection algorithm based on modal testing, vibrothermography, and feature extraction. The theoretical development of mathematical models is presented to illustrate the principles supporting the associated algorithms, through which the importance of the three components contributing to this approach is demonstrated. Experimental tests and analytical simulations have been performed in laboratory conditions to show that the proposed damage detection algorithm is able to detect, locate, and extract the features generated due to the presence of sub-surface damage in aerospace grade composite materials captured by an infrared camera. Through tests and analyses, the reliability and repeatability of this damage detection algorithm are verified. In the concluding observations of this article, suggestions are proposed for this algorithm’s practical applications in an operational environment.


2011 ◽  
Vol 368-373 ◽  
pp. 2402-2405
Author(s):  
Nai Zhi Zhao ◽  
Chang Tie Huang ◽  
Xin Chen

Many of the wave propagation based structural health monitoring techniques rely on some knowledge of the structure in a healthy state in order to identify damage. Baseline measurements are recorded when a structure is pristine and are stored for comparison to future data. A concern with the use of baseline subtraction methods is the ability to discern structural changes from the effects of varying environmental and operational conditions when analyzing the vibration response of a system. The use of a standard baseline subtraction technique may falsely indicate damage when environmental or operational variations are present between baseline measurements and new measurements. A procedure was outlined for the method, including excitation and recording of Lamb waves, and the use of damage detection algorithms. In this paper, several tests are performed and the results are used to help develop the damage detection algorithms previously described, and to evaluate the performance of the instantaneous baseline SHM technique. Analytical testing is first performed by feeding known input signals into each damage detection algorithm and analyzing the output data. The results of the analytical testing are used to help develop the damage detection algorithms.


Author(s):  
Brent Phares ◽  
Ping Lu ◽  
Terry Wipf ◽  
Lowell Greimann ◽  
Junwon Seo

2017 ◽  
Vol 754 ◽  
pp. 387-390 ◽  
Author(s):  
Nan Yue ◽  
Zahra Sharif Khodaei ◽  
Ferri M.H. Aliabadi

Detectability of damage using Lamb waves depends on many factors such as size and severity of damage, attenuation of the wave and distance to the transducers. This paper presents a detectability model for pitch-catch sensors configuration for structural health monitoring (SHM) applications. The proposed model considers the physical properties of lamb wave propagation and is independent of damage detection algorithm, which provides a generic solution for probability of detection. The applicability of the model in different environmental and operational conditions is also discussed.


2014 ◽  
Vol 627 ◽  
pp. 1-4 ◽  
Author(s):  
Z. Sharif-Khodaei ◽  
M.H. Aliabadi

Damage detection in anisotropic composite plates based on Lamb wave technique has been investigated. A network of transducers is used to detect barely visible damage caused by impact. A CFRP composite plate has been impacted and tested to verify the proposed damage detection algorithms. The difference in the propagational properties of Lamb waves in the pristine state and the damage state is used through data fusion and imaging algorithms to detect, locate and characterise the damage. The influence of directionality of the velocity on the validity of the detection algorithm is examined and some results are presented.


Sign in / Sign up

Export Citation Format

Share Document