Investigation of Sensor Placement in Lamb Wave-Based SHM Method

2012 ◽  
Vol 518 ◽  
pp. 174-183 ◽  
Author(s):  
Pawel Malinowski ◽  
Tomasz Wandowski ◽  
Wiesław M. Ostachowicz

In this paper the investigation of a structural health monitoring method for thin-walled parts of structures is presented. The concept is based on the guided elastic wave propagation phenomena. This type of waves can be used in order to obtain information about structure condition and possibly damaged areas. Guided elastic waves can travel in the medium with relatively low attenuation, therefore they enable monitoring of extensive parts of structures. In this way it is possible to detect small defects in their early stage of growth. It is essential because undetected damage can endanger integrity of a structure. In reported investigation piezoelectric transducer was used to excite guided waves in chosen specimens. Dispersion of guided waves results in changes of velocity with the wave frequency, therefore a narrowband signal was used. Measurement of the wave field was realized using laser scanning vibrometer that registered the velocity responses at points belonging to a defined mesh. An artificial discontinuity was introduced to the specimen. The goals of the investigation was to detect it and find optimal sensor placement for this task. Determination of the optimal placement of sensors is a very challenging mission. In conducted investigation laser vibrometer was used to facilitate the task. The chosen mesh of measuring points was the basis for the investigation. The purpose was to consider various configuration of piezoelectric sensors. Instead of using vast amount of piezoelectric sensors the earlier mentioned laser vibrometer was used to gather the necessary data from wave propagation. The signals gather by this non-contact method for the considered network were input to the damage detection algorithm. Damage detection algorithm was based on a procedure that seeks in the signals the damage-reflected waves. Knowing the wave velocity in considered material the damage position can be estimated.

2017 ◽  
Vol 754 ◽  
pp. 387-390 ◽  
Author(s):  
Nan Yue ◽  
Zahra Sharif Khodaei ◽  
Ferri M.H. Aliabadi

Detectability of damage using Lamb waves depends on many factors such as size and severity of damage, attenuation of the wave and distance to the transducers. This paper presents a detectability model for pitch-catch sensors configuration for structural health monitoring (SHM) applications. The proposed model considers the physical properties of lamb wave propagation and is independent of damage detection algorithm, which provides a generic solution for probability of detection. The applicability of the model in different environmental and operational conditions is also discussed.


2015 ◽  
Vol 220-221 ◽  
pp. 264-270 ◽  
Author(s):  
Sandris Rucevskis ◽  
Pavel Akishin ◽  
Andris Chate

The paper describes on-going research effort at detecting and localizing damage in plate-like structures using mode shape curvature based damage detection algorithm. The proposed damage index uses data on exclusively mode shape curvature from the damaged structure. This method was originally developed for beam-like structures. The article generalizes the method of plate-like structures characterized by two-dimensional mode shape curvature. To examine limitations of the method, several sets of simulated data are applied and the obtained results of the numerical detection of damage are validated by comparing them with the findings of the case of the experimental test. The simulated test cases include the damage of various levels of severity. In order to ascertain the sensitivity of the proposed method for noisy experimental data, numerical mode shapes are corrupted with different levels of random noise. Modal frequencies and corresponding mode shapes of an aluminium plate containing mill-cut damage are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer (SLV) for the experimental study.


2011 ◽  
Vol 22 (16) ◽  
pp. 1869-1877 ◽  
Author(s):  
Annamaria Pau ◽  
Fabrizio Vestroni

The waveguide geometry of numerous structures used in civil and mechanical engineering can be exploited for the use of guided waves in damage detection. The present study examines the response of a bar to an impulsive force along its axis and points out the differences in the damaged bar. Relationships between the damage parameters and the amplitude and time-delay of the reflected and transmitted waves are exploited to formulate a damage characterization procedure. This procedure is analytically and experimentally tested in different damage configurations. The results are compared to those obtained from conventional methods based on frequency variations.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3518 ◽  
Author(s):  
Dan Li ◽  
Ming Shi ◽  
Feng Xu ◽  
Chengcheng Liu ◽  
Jianqiu Zhang ◽  
...  

In this paper, a new approach to guided wave ray tomography for temperature-robust damage detection with time-of-flight (TOF) temperature compensation is developed. Based on the linear relationship between the TOF of a guided wave and temperature, analyses show that the TOF of the baseline signal can be compensated by the temperature measurement of the inspected materials without estimating the temperature compensation parameters. The inversion is based on the optimization of the TOF misfit function between the inspected and compensated baseline TOFs of the guided waves, and is applied by the elastic net penalty approach to perform thickness change mapping in a structural health monitoring (SHM) application. Experiments that are conducted in isotropic plates by piezoelectric sensors demonstrate the effectiveness of the proposed method. According to the results, our approach not only eliminates the artefacts that are caused by a temperature variation from 25 °C to 70 °C but also provides more accurate and clearer imaging of damage than conventional ray tomography methods.


2012 ◽  
Vol 47 ◽  
pp. 1185-1188 ◽  
Author(s):  
E. Köppe ◽  
M. Bartholmai ◽  
J. Prager

Sign in / Sign up

Export Citation Format

Share Document