Upgraded Regularized Deconvolution of complex dynamometer dynamics for an improved correction of cutting forces in milling

2022 ◽  
Vol 166 ◽  
pp. 108412
Author(s):  
G. Totis ◽  
M. Sortino
Keyword(s):  
2015 ◽  
Vol 9 (6) ◽  
pp. 583
Author(s):  
Dario German Buitrago ◽  
Luis Carlos Ruíz ◽  
Olga Lucia Ramos

2018 ◽  
Vol 50 (4) ◽  
pp. 458-464
Author(s):  
Xu Bao ◽  
Xiaolei Guo ◽  
Pingxiang Cao ◽  
Linlin Xie ◽  
Minsi Deng

2021 ◽  
pp. 089270572110130
Author(s):  
Gökçe Özden ◽  
Mustafa Özgür Öteyaka ◽  
Francisco Mata Cabrera

Polyetheretherketone (PEEK) and its composites are commonly used in the industry. Materials with PEEK are widely used in aeronautical, automotive, mechanical, medical, robotic and biomechanical applications due to superior properties, such as high-temperature work, better chemical resistance, lightweight, good absorbance of energy and high strength. To enhance the tribological and mechanical properties of unreinforced PEEK, short fibers are added to the matrix. In this study, Artificial Neural Networks (ANNs) and the Adaptive-Neural Fuzzy Inference System (ANFIS) are employed to predict the cutting forces during the machining operation of unreinforced and reinforced PEEK with30 v/v% carbon fiber and 30 v/v% glass fiber machining. The cutting speed, feed rate, material type, and cutting tools are defined as input parameters, and the cutting force is defined as the system output. The experimental results and test results that are predicted using the ANN and ANFIS models are compared in terms of the coefficient of determination ( R2) and mean absolute percentage error. The test results reveal that the ANFIS and ANN models provide good prediction accuracy and are convenient for predicting the cutting forces in the turning operation of PEEK.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1161
Author(s):  
Hans Jürgen Maier ◽  
Sebastian Herbst ◽  
Berend Denkena ◽  
Marc-André Dittrich ◽  
Florian Schaper ◽  
...  

In the current study, the potential of dry machining of the titanium alloy Ti-6Al-4V with uncoated tungsten carbide solid endmills was explored. It is demonstrated that tribo-oxidation is the dominant wear mechanism, which can be suppressed by milling in an extreme high vacuum adequate (XHV) environment. The latter was realized by using a silane-doped argon atmosphere. In the XHV environment, titanium adhesion on the tool was substantially less pronounced as compared to reference machining experiments conducted in air. This goes hand in hand with lower cutting forces in the XHV environment and corresponding changes in chip formation. The underlying mechanisms and the ramifications with respect to application of this approach to dry machining of other metals are discussed.


Sign in / Sign up

Export Citation Format

Share Document