ALE formulation for dynamic modeling and simulation of cable-driven mechanisms considering stick–slip frictions

2022 ◽  
Vol 168 ◽  
pp. 108633
Author(s):  
Xudong Zheng ◽  
Taiwei Yang ◽  
Zhang Chen ◽  
Xueqian Wang ◽  
Bin Liang ◽  
...  
2021 ◽  
Author(s):  
Xudong Zheng ◽  
Taiwei Yang ◽  
Xianjin Zhu ◽  
Zhang Chen ◽  
Xueqian Wang ◽  
...  

Abstract The cable-driven segmented manipulator with cable-constrained synchronous rotating mechanisms (CCSRM) is a new type of continuum manipulator, which has large stiffness and less motors, and thus exhibits excellent comprehensive performance. This paper presents a dynamic modeling method for this type of manipulator to analyze the friction and deformation of the cables on the dynamical behaviors of the system. First, the driving cables are modeled based on the ALE formulation, the strategies for detecting stick-slip transitions are proposed by using a trial-and-error algorithm, and the stiff problems of the dynamic equations are released by a model smoothing method. Second, the dynamic modeling method for rigid links is presented by using quaternion parameters. Third, the connecting cables are modeled by torsional spring-dampers and the frictions between the connecting cables and the conduits are considered based on a modified Coulomb friction model. Finally, the numerical results are presented and verified by comparing with experiment results. The study shows that the friction and cable deformation play an important role in the dynamical behaviors of the manipulator. Due to these two factors, the constant curvature bending of the segments does not remain.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840118
Author(s):  
Xiaojun Wang

The main purpose of this paper is to present a method for dynamic modeling and simulation of the translational joint with friction and clearance. The sizes of the clearances and the impacts between the slider and the guide in the translational joint can be neglected when the clearance sizes are very small. The geometric constraints of the translational joint are treated as bilateral constraints. The contact forces acting on the slider are reduced to the forces on the slider corners. The LuGre friction model is used to describe friction between slider and guide, because it can capture the variation of the friction force with slip velocity and the slider motion with stick–slip phenomenon. The problem of computing the normal forces on the slider is formulated and solved as a horizontal linear complementarity problem (HLCP), which is embedded in the event-driven method. Finally, a numerical example is considered and numerical results are presented to show the feasibility and the effectiveness of the method.


2019 ◽  
Vol 133 ◽  
pp. 514-530 ◽  
Author(s):  
Navid Asmari Saadabad ◽  
Hamed Moradi ◽  
Gholamreza Vossoughi

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Guoping Wang ◽  
Bao Rong ◽  
Ling Tao ◽  
Xiaoting Rui

Efficient, precise dynamic modeling and control of complex underwater towed systems has become a research focus in the field of multibody dynamics. In this paper, based on finite segment model of cable, by defining the new state vectors and deducing the new transfer equations of underwater towed systems, a new highly efficient method for dynamic modeling and simulation of underwater towed systems is presented and the pay-out/reel-in process of towed cable is studied. The computational efficiency and numerical stability of the proposed method are discussed. When using the method to study the dynamics of underwater towed systems, it avoids the global dynamic equations of system, and simplifies solving procedure. Irrespective of the degree of freedom of underwater towed system, the matrices involved in the proposed method are always very small, which greatly improve the computational efficiency and avoids the computing difficulties caused by too high matrix orders for complex underwater towed systems. Formulations of the method as well as numerical simulations are given to validate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document