scholarly journals Dynamic Modeling and Experimental Verification of A Cable-Driven Continuum Manipulator With Cable-Constrained Synchronous Rotating Mechanisms

Author(s):  
Xudong Zheng ◽  
Taiwei Yang ◽  
Xianjin Zhu ◽  
Zhang Chen ◽  
Xueqian Wang ◽  
...  

Abstract The cable-driven segmented manipulator with cable-constrained synchronous rotating mechanisms (CCSRM) is a new type of continuum manipulator, which has large stiffness and less motors, and thus exhibits excellent comprehensive performance. This paper presents a dynamic modeling method for this type of manipulator to analyze the friction and deformation of the cables on the dynamical behaviors of the system. First, the driving cables are modeled based on the ALE formulation, the strategies for detecting stick-slip transitions are proposed by using a trial-and-error algorithm, and the stiff problems of the dynamic equations are released by a model smoothing method. Second, the dynamic modeling method for rigid links is presented by using quaternion parameters. Third, the connecting cables are modeled by torsional spring-dampers and the frictions between the connecting cables and the conduits are considered based on a modified Coulomb friction model. Finally, the numerical results are presented and verified by comparing with experiment results. The study shows that the friction and cable deformation play an important role in the dynamical behaviors of the manipulator. Due to these two factors, the constant curvature bending of the segments does not remain.

Author(s):  
Tamer M. Wasfy

An asperity spring friction model that uses a variable anchor point spring along with a velocity dependent force is presented. The model is incorporated in an explicit timeintegration finite element code. The friction model is used along with a penalty-based normal contact model to simulate the dynamic response of a two-pulley belt-drive system. It is shown that the present friction model accurately captures the stick-slip behavior between the belt and the pulleys using a much larger time-step than a pure velocity-dependent approximate Coulomb friction model.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840118
Author(s):  
Xiaojun Wang

The main purpose of this paper is to present a method for dynamic modeling and simulation of the translational joint with friction and clearance. The sizes of the clearances and the impacts between the slider and the guide in the translational joint can be neglected when the clearance sizes are very small. The geometric constraints of the translational joint are treated as bilateral constraints. The contact forces acting on the slider are reduced to the forces on the slider corners. The LuGre friction model is used to describe friction between slider and guide, because it can capture the variation of the friction force with slip velocity and the slider motion with stick–slip phenomenon. The problem of computing the normal forces on the slider is formulated and solved as a horizontal linear complementarity problem (HLCP), which is embedded in the event-driven method. Finally, a numerical example is considered and numerical results are presented to show the feasibility and the effectiveness of the method.


2022 ◽  
Vol 168 ◽  
pp. 108633
Author(s):  
Xudong Zheng ◽  
Taiwei Yang ◽  
Zhang Chen ◽  
Xueqian Wang ◽  
Bin Liang ◽  
...  

Author(s):  
Luo Shaomin ◽  
Yan Zou ◽  
Xu Cheng ◽  
Li Juan

In this study, a numerical investigation on the dynamic characteristics of a reciprocating mechanism with clearance considering parameter uncertainty is presented. For this purpose, complex space motion between parts is converted into simplified motion of basic component based on the proposed mass substitution model. The contact model in motion parts is established using the Lankarani–Nikravesh model, and the friction effect is considering using a modified Coulomb friction model in the proposed methodology. The comparisons between the numerical results, experimental ones, and virtual simulation ones are carried out. The results show that the proposed methodology has a higher efficiency and calculated precision to predict the dynamic behavior of a reciprocating mechanical system with clearance. In addition, the effects of interval clearance and initial force in the gas-operated chamber on the dynamic behavior are analyzed, respectively. Also, the interaction of two factors is discussed to improve the motion stability.


Author(s):  
H Moradian ◽  
GR Vossoughi

In this paper, the problem of velocity control of a micro-robot’s locomotion with nanometric resolution has been investigated. A sliding, A-shaped micro-robot, used in precision positioning applications is analyzed. This micro-robot is actuated by means of a piezoelectric stack actuator in order to produce translational and periodic motion. A dynamic model of the robot is proposed assuming linear behavior for the piezoelectric stack and Coulomb friction model. Then, in order to control the velocity of micro-robot, first a robust sliding mode control is used so that the relative angle between the legs in the micro-robot tracks a periodic reference signal. The velocity tracking for the micro-robot is achieved using an amplitude modulation strategy by adapting the amplitude of this reference signal. Velocity control of locomotion is assumed to be in the presence of a non-separation constraint (between the legs and the substrate) and friction uncertainties. Also, a state observer is designed to estimate the rate of change of the relative angle between the legs of the micro-robot, which is needed in the velocity control algorithm. Finally, simulation results are presented which illustrate the effectiveness of the proposed control strategy.


Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Nidal Farhat ◽  
Vicente Mata ◽  
Álvaro Page ◽  
Miguel Díaz-Rodríguez

SUMMARYDynamic simulation in robotic systems can be considered as a useful tool not only for the design of both mechanical and control systems, but also for planning the tasks of robotic systems. Usually, the dynamic model suffers from discontinuities in some parts of it, such as the use of Coulomb friction model and the contact problem. These discontinuities could lead to stiff differential equations in the simulation process. In this paper, we present an algorithm that solves the discontinuity problem of the Coulomb friction model without applying any normalization. It consists of the application of an external switch that divides the integration interval into subintervals, the calculation of the friction force in the stick phase, and further improvements that enhance its stability. This algorithm can be implemented directly in the available commercial integration routines with event-detecting capability. Results are shown by a simulation process of a simple 1-DoF oscillator and a 3-DoF parallel robot prototype considering Coulomb friction in its joints. Both simulations show that the stiffness problem has been solved. This algorithm is presented in the form of a flowchart that can be extended to solve other types of discontinuity.


Author(s):  
A. A. Abouelsoud ◽  
J. Abdo Ahmed

Friction-induced self-sustained oscillation result in a very robust limit cycle that characterizes stick-slip motion. This motion should be avoided because it creates unwanted noise, diminishes accuracy, and increases wear. The stick-slip motion produced by a mass-spring-damper on a moving belt is analyzed using Lyapunov second method, which is based on constructing a positive definite function and checking the condition for which its time derivative is negative semi-definite. From this condition an estimate of the amplitude of the velocity of the limit cycle of the stick-slip motion is obtained. This estimate is found to be the zero of a certain function derived from the Coulomb friction model. An estimate of the amplitude of the displacement is also found. It is shown that the simulation results of the amplitude and the estimated amplitude are in a good match.


2015 ◽  
Vol 6 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Y. F. Liu ◽  
J. Li ◽  
Z. M. Zhang ◽  
X. H. Hu ◽  
W. J. Zhang

Abstract. The micro stick-slip motion systems, such as piezoelectric stick-slip actuators (PE-SSAs), can provide high resolution motions yet with a long motion range. In these systems, friction force plays an active role. Although numerous friction models have been developed for the control of micro motion systems, behaviors of these models in micro stick-slip motion systems are not well understood. This study (1) gives a survey of the basic friction models and (2) tests and compares 5 friction models in the literature, including Coulomb friction model, Stribeck friction model, Dahl model, LuGre model, and the elastoplastic friction model on the same test-bed (i.e. the PE-SSA system). The experiments and simulations were done and the reasons for the difference in the performance of these models were investigated. The study concluded that for the micro stick-slip motion system, (1) Stribeck model, Dahl model and LuGre model all work, but LuGre model has the best accuracy and (2) Coulomb friction model and the elastoplastic model does not work. The study provides contributions to motion control systems with friction, especially for micro stick-slip or step motion systems as well as general micro-motion systems.


Author(s):  
J. W. Liang ◽  
B. F. Feeny

Abstract The dynamic behavior of the transition between slipping and sticking motions of a mass-spring system with dry friction is studied numerically and experimentally. Three mathematical models of dry friction are incorporated in the forced oscillator’s equation of motion. The wavelet transform is used to analyze response signals for both high and low frequency contents. For the simulated dynamical response, the wavelet transform can efficiently depict the transition characteristics in the time/frequency domain. The signatures observed in wavelet contour plot are compared to experimental results to evaluate the mathematical friction models. The wavelet transform can also be used to detect the dynamics of the sensor. The low-frequency experimental friction behavior is somewhat like the Coulomb friction model and its smooth version.


Author(s):  
Ali Kamali Eigoli ◽  
GholamReza Vossoughi

In this paper, a novel, A-shaped microrobot with nanometric resolution for precision positioning applications is addressed. The locomotion concept of the mechanism is founded on the “friction drive principle”. To achieve the translational motion, a stack piezoelectric actuates the microrobot near its natural frequency. The dynamic modeling of the mechanism is based on the assumptions of linear behavior of piezo stack actuator and Coulomb friction model at contact points. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is presented. Influences of different friction coefficients on the behavior of the microrobot, with respect to defined criteria, are invoked. Simulations show a velocity of 1 mm/s, a motion resolution of 180 nm, and a power consumption of 1.5 mW. Comparisons made with other microrobots of the same locomotion principle indicate good improvements in all criteria.


Sign in / Sign up

Export Citation Format

Share Document