scholarly journals 587. Further Advances in Immuno-Gene Therapy Against Human Papillomavirus by Adeno-Associated Virus Gene Transfer into Dendritic Cells

2004 ◽  
Vol 9 ◽  
pp. S222
Author(s):  
Jared S. Bee ◽  
Kristin O'Berry ◽  
Yu (Zoe) Zhang ◽  
Megan Kuhn Phillippi ◽  
Akanksha Kaushal ◽  
...  

2013 ◽  
Vol 24 (4) ◽  
pp. 270-278 ◽  
Author(s):  
Shu-Jen Chen ◽  
Julie Johnston ◽  
Arbans Sandhu ◽  
Lawrence T. Bish ◽  
Ruben Hovhannisyan ◽  
...  

2017 ◽  
Vol 1 (26) ◽  
pp. 2591-2599 ◽  
Author(s):  
Lindsey A. George

Abstract Concurrent with the development of recombinant factor replacement products, the characterization of the F9 and F8 genes over 3 decades ago allowed for the development of recombinant factor products and made the hemophilias a target disease for gene transfer. The progress of hemophilia gene therapy has been announced in 3 American Society of Hematology scientific plenary sessions, including the first “cure” in a large animal model of hemophilia B in 1998, first in human sustained vector-derived factor IX activity in 2011, and our clinical trial results reporting sustained vector-derived factor IX activity well into the mild or normal range in 2016. This progression to clinically meaningful success combined with numerous ongoing recombinant adeno-associated virus (rAAV)–mediated hemophilia gene transfer clinical trials suggest that the goal of gene therapy to alter the paradigm of hemophilia care may soon be realized. Although several novel therapeutics have recently emerged for hemophilia, gene therapy is unique in its potential for a one-time disease-altering, or even curative, treatment. This review will focus on the prior progress and current clinical trial investigation of rAAV-mediated gene transfer for hemophilia A and B.


2015 ◽  
Vol 125 (2) ◽  
pp. 870-880 ◽  
Author(s):  
Randy J. Chandler ◽  
Matthew C. LaFave ◽  
Gaurav K. Varshney ◽  
Niraj S. Trivedi ◽  
Nuria Carrillo-Carrasco ◽  
...  

1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


2004 ◽  
Vol 9 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Alshad S Lalani ◽  
Betty Chang ◽  
JianMin Lin ◽  
Scott S Case ◽  
Bo Luan ◽  
...  

2016 ◽  
Vol 90 (16) ◽  
pp. 7019-7031 ◽  
Author(s):  
Sarah C. Nicolson ◽  
Chengwen Li ◽  
Matthew L. Hirsch ◽  
Vincent Setola ◽  
R. Jude Samulski

ABSTRACTWhile the recent success of adeno-associated virus (AAV)-mediated gene therapy in clinical trials is promising, challenges still face the widespread applicability of recombinant AAV(rAAV). A major goal is to enhance the transduction efficiency of vectors in order to achieve therapeutic levels of gene expression at a vector dose that is below the immunological response threshold. In an attempt to identify novel compounds that enhance rAAV transduction, we performed two high-throughput screens comprising 2,396 compounds. We identified 13 compounds that were capable of enhancing transduction, of which 12 demonstrated vector-specific effects and 1 could also enhance vector-independent transgene expression. Many of these compounds had similar properties and could be categorized into five groups: epipodophyllotoxins (group 1), inducers of DNA damage (group 2), effectors of epigenetic modification (group 3), anthracyclines (group 4), and proteasome inhibitors (group 5). We optimized dosing for the identified compounds in several immortalized human cell lines as well as normal diploid cells. We found that the group 1 epipodophyllotoxins (teniposide and etoposide) consistently produced the greatest transduction enhancement. We also explored transduction enhancement among single-stranded, self-complementary, and fragment vectors and found that the compounds could impact fragmented rAAV2 transduction to an even greater extent than single-stranded vectors.In vivoanalysis of rAAV2 and all of the clinically relevant compounds revealed that, consistent with ourin vitroresults, teniposide exhibited the greatest level of transduction enhancement. Finally, we explored the capability of teniposide to enhance transduction of fragment vectorsin vivousing an AAV8 capsid that is known to exhibit robust liver tropism. Consistent with ourin vitroresults, teniposide coadministration greatly enhanced fragmented rAAV8 transduction at 48 h and 8 days. This study provides a foundation based on the rAAV small-molecule screen methodology, which is ideally used for more-diverse libraries of compounds that can be tested for potentiating rAAV transduction.IMPORTANCEThis study seeks to enhance the capability of adeno-associated viral vectors for therapeutic gene delivery applicable to the treatment of diverse diseases. To do this, a comprehensive panel of FDA-approved drugs were tested in human cells and in animal models to determine if they increased adeno-associated virus gene delivery. The results demonstrate that particular groups of drugs enhance adeno-associated virus gene delivery by unknown mechanisms. In particular, the enhancement of gene delivery was approximately 50 to 100 times better with than without teniposide, a compound that is also used as chemotherapy for cancer. Collectively, these results highlight the potential for FDA-approved drug enhancement of adeno-associated virus gene therapy, which could result in safe and effective treatments for diverse acquired or genetic diseases.


2011 ◽  
Vol 19 (5) ◽  
pp. 870-875 ◽  
Author(s):  
Eduardo Salido ◽  
Marisol Rodriguez-Pena ◽  
Alfredo Santana ◽  
Stuart G. Beattie ◽  
Harald Petry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document