mediate immune response
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Jeanmaire Molina ◽  
Dejan Nikolic ◽  
Jashvanth Raaj Jeevarathanam ◽  
Rinat Abzalimov ◽  
Eun-Jung Park ◽  
...  

Abstract Main conclusion Metabolites in Rafflesia-infected and non-infected Tetrastigma were compared which may have applications in Rafflesia propagation. Benzylisoquinoline alkaloids, here reported for the first time in Vitaceae, were abundant in non-infected shoots and may be a form of defense. In Rafflesia-infected shoots, oxylipins, which mediate immune response, were elevated. Abstract Endemic to the forests of Southeast Asia, Rafflesia (Rafflesiaceae) is a genus of holoparasitic plants producing the largest flowers in the world, yet completely dependent on its host, the tropical grape vine, Tetrastigma. Rafflesia species are threatened with extinction, making them an iconic symbol of plant conservation. Thus far, propagation has proved challenging, greatly decreasing efficacy of conservation efforts. This study compared the metabolites in the shoots of Rafflesia-infected and non-infected Tetrastigma loheri to examine how Rafflesia infection affects host metabolomics and elucidate the Rafflesia infection process. Results from LC–MS-based untargeted metabolomics analysis showed benzylisoquinoline alkaloids were naturally more abundant in non-infected shoots and are here reported for the first time in the genus Tetrastigma, and in the grape family, Vitaceae. These metabolites have been implicated in plant defense mechanisms and may prevent a Rafflesia infection. In Rafflesia-infected shoots, oxygenated fatty acids, or oxylipins, and a flavonoid, previously shown involved in plant immune response, were significantly elevated. This study provides a preliminary assessment of metabolites that differ between Rafflesia-infected and non-infected Tetrastigma hosts and may have applications in Rafflesia propagation to meet conservation goals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zicong He ◽  
Shuixing Zhang

Tumor-associated macrophages (TAMs) are some of the most abundant immune cells within tumors and perform a broad repertoire of functions via diverse phenotypes. On the basis of their functional differences in tumor growth, TAMs are usually categorized into two subsets of M1 and M2. It is well established that the tumor microenvironment (TME) is characterized by hypoxia along with tumor progression. TAMs adopt an M1-like pro-inflammatory phenotype at the early phases of oncogenesis and mediate immune response that inhibits tumor growth. As tumors progress, anabatic hypoxia of the TME gradually induces the M2-like functional transformation of TAMs by means of direct effects, metabolic influence, lactic acidosis, angiogenesis, remodeled stroma, and then urges them to participate in immunosuppression, angiogenesis and other tumor-supporting procedure. Therefore, thorough comprehension of internal mechanism of this TAM functional transformation in the hypoxic TME is of the essence, and might provide some novel insights in hypoxic tumor immunotherapeutic strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shihao Xie ◽  
Haixia Wei ◽  
Anping Peng ◽  
Anqi Xie ◽  
Jiajie Li ◽  
...  

BackgroundTh cells (helper T cells) have multiple functions in Schistosoma japonicum (S. japonicum) infection. Inducible co-stimulator (ICOS) is induced and expressed in activated T lymphocytes, which enhances the development of B cells and antibody production through the ICOS/ICOSL pathway. It remains unclear about the role and possible regulating mechanism of ICOS+ Th cells in the spleen of S. japonicum-infected C57BL/6 mice.MethodsC57BL/6 mice were infected with cercariae of S. japonicum through the abdomen. The expression of ICOS, activation markers, and the cytokine production on CD4+ ICOS+ Th cells were detected by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Moreover, the differentially expressed gene data of ICOS+ and ICOS− Th cells from the spleen of infected mice were obtained by mRNA sequencing. Besides, Western blot and chromatin immunoprecipitation (ChIP) were used to explore the role of Ikzf2 on ICOS expression.ResultsAfter S. japonicum infection, the expression of ICOS molecules gradually increased in splenic lymphocytes, especially in Th cells (P < 0.01). Compared with ICOS− Th cells, more ICOS+ Th cells expressed CD69, CD25, CXCR5, and CD40L (P < 0.05), while less of them expressed CD62L (P < 0.05). Also, ICOS+ Th cells expressed more cytokines, such as IFN-γ, IL-4, IL-10, IL-2, and IL-21 (P < 0.05). RNA sequencing results showed that many transcription factors were increased significantly in ICOS+ Th cells, especially Ikzf2 (P < 0.05). And then, the expression of Ikzf2 was verified to be significantly increased and mainly located in the nuclear of ICOS+ Th cells. Finally, ChIP experiments and dual-luciferase reporter assay confirmed that Ikzf2 could directly bind to the ICOS promoter in Th cells.ConclusionIn this study, ICOS+ Th cells were found to play an important role in S. japonicum infection to induce immune response in the spleen of C57BL/6 mice. Additionally, Ikzf2 was found to be one important transcription factor that could regulate the expression of ICOS in the spleen of S. japonicum-infected C57BL/6 mice.


1982 ◽  
Vol 93 (2) ◽  
pp. 196-198
Author(s):  
A. A. Suzdal'tseva ◽  
M. M. Kapichnikov ◽  
Yu. A. Shalyminova ◽  
Yu. V. Zykov ◽  
L. D. Smirnov

Nature ◽  
1981 ◽  
Vol 291 (5817) ◽  
pp. 666-668 ◽  
Author(s):  
Aya Jakobovits ◽  
Ayala Frenkel ◽  
Nathan Sharon ◽  
Irun R. Cohen

Sign in / Sign up

Export Citation Format

Share Document