scholarly journals 1030. A Rhesus Macaque Transplant Model for Drug Selection of Hematopoietic Stem Cells Transduced with MGMT Vectors

2005 ◽  
Vol 11 ◽  
pp. S398
Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5747-5756 ◽  
Author(s):  
Huifen Zhao ◽  
Tamara I. Pestina ◽  
Md Nasimuzzaman ◽  
Perdeep Mehta ◽  
Phillip W. Hargrove ◽  
...  

Abstract Correction of murine models of β-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human γ-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with β-thalassemic HSCs transduced with a γ-globin/MGMT vector initially had subtherapeutic levels of red cells expressing γ-globin. To enrich γ-globin–expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of γ-globin–expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of γ-globin–expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for β-thalassemia.


Transfusion ◽  
2008 ◽  
Vol 48 (3) ◽  
pp. 561-566 ◽  
Author(s):  
Hirofumi Yura ◽  
Yasuhiro Kanatani ◽  
Masayuki Ishihara ◽  
Bonpei Takase ◽  
Masaki Nambu ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 506-513 ◽  
Author(s):  
Derek A. Persons ◽  
Esther R. Allay ◽  
Nobukuni Sawai ◽  
Phillip W. Hargrove ◽  
Thomas P. Brent ◽  
...  

AbstractSuccessful gene therapy of β-thalassemia will require replacement of the abnormal erythroid compartment with erythropoiesis derived from genetically corrected, autologous hematopoietic stem cells (HSCs). However, currently attainable gene transfer efficiencies into human HSCs are unlikely to yield sufficient numbers of corrected cells for a clinical benefit. Here, using a murine model of β-thalassemia, we demonstrate for the first time that selective enrichment in vivo of transplanted, drug-resistant HSCs can be used therapeutically and may therefore be a useful approach to overcome limiting gene transfer. We used an oncoretroviral vector to transfer a methylguanine methyltransferase (MGMT) drug-resistance gene into normal bone marrow cells. These cells were transplanted into β-thalassemic mice given nonmyeloablative pretransplantation conditioning with temozolomide (TMZ) and O6-benzylguanine (BG). A majority of mice receiving 2 additional courses of TMZ/BG demonstrated in vivo selection of the drug-resistant cells and amelioration of anemia, compared with untreated control animals. These results were extended using a novel γ-globin/MGMT dual gene lentiviral vector. Following drug treatment, normal mice that received transduced cells had an average 67-fold increase in γ-globin expressing red cells. These studies demonstrate that MGMT-based in vivo selection may be useful to increase genetically corrected cells to therapeutic levels in patients with β-thalassemia.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 2844-2853 ◽  
Author(s):  
M Ogawa

Abstract Available evidence indicates that qualitative changes in hematopoietic stem cells and progenitors, such as the decision of stem cells to self- renew or differentiate, or selection of lineage potentials by the multipotential progenitors during differentiation (commitment), are intrinsic properties of the progenitors and are stochastic in nature. In-contrast, proliferative kinetics of the progenitors, namely survival and expansion of the progenitors, appear to be controlled by a number of interacting cytokines. While proliferation and maturation of committed progenitors is controlled by late-acting lineage-specific factors such as Ep, M-CSF, G-CSF, and IL-5, progenitors at earlier stages of development are controlled by a group of several overlapping cytokines. IL-3, GM-CSF, and IL-4 regulate proliferation of multipotential progenitors only after they exit from G0 and begin active cell proliferation. Triggering of cycling by dormant primitive progenitors and maintenance of B-cell potential of the primitive progenitors appears to require interactions of early acting cytokines including IL-6, G-CSF, IL-11, IL-12, LIF, and SF. Currently, this simple model fits our understanding of the interactions of growth factors with hematopoietic progenitors. Naturally the model risks oversimplification of a very complex process. However, because the model is testable, it will hopefully challenge investigators to design new experiments to examine its validity.


Sign in / Sign up

Export Citation Format

Share Document