Quaternary structural partitioning within the rigid Tarim plate inferred from magnetostratigraphy and sedimentation rate in the eastern Tarim Basin in China

2014 ◽  
Vol 81 (3) ◽  
pp. 424-432 ◽  
Author(s):  
Hong Chang ◽  
Zhisheng An ◽  
Weiguo Liu ◽  
Hong Ao ◽  
Xiaoke Qiang ◽  
...  

AbstractIt has been proposed that within the Tarim Basin tectonic activity has been limited since Triassic time. However, on the basis of magnetostratigraphy from the eastern Tarim Basin, which defines the chronology of sedimentation and structural evolution of the basin, we show that the basin interior has been uplifted and partitioned during Quaternary. The magnetostratigraphy was constructed from 2228 samples that yielded acceptable inclination values. Characteristic remnant magnetization (ChRM) with both normal (N1–N11) and reversed (R1–R11) polarity was isolated by thermal demagnetization. The data correlate best with polarity chrons C3r to C1n, which range from 5.39 Ma to recent on the geological time scale 2004 (GTS2004). An abrupt decrease in the sedimentation rate is observed at 1.77 Ma in the Ls1 core. This change does not overlap with known Pleistocene climate-change events. We attribute this sedimentation rate decrease to a structurally controlled local decrease in accommodation space where basin basement uplifts occur. This period of sedimentary environmental change reveals that structural partitioning in the basement of the Tarim Basin occurred since ~ 1.77 Ma, and we speculate that tilting of the Southeast Uplift (a sub-basin unit) within the Tarim Basin began in early Pleistocene time.

2018 ◽  
Vol 89 (2) ◽  
pp. 533-562 ◽  
Author(s):  
Gaia Crippa ◽  
Andrea Baucon ◽  
Fabrizio Felletti ◽  
Gianluca Raineri ◽  
Daniele Scarponi

AbstractThe Arda River marine succession (Italy) is an excellent site to apply an integrated approach to paleoenvironmental reconstructions, combining the results of sedimentology, body fossil paleontology, and ichnology to unravel the sedimentary evolution of a complex marine setting in the frame of early Pleistocene climate change and tectonic activity. The succession represents a subaqueous extension of a fluvial system, originated during phases of advance of fan deltas affected by high-density flows triggered by river floods, and overlain by continental conglomerates, indicating a relative sea level fall and the establishment of a continental environment. An overall regressive trend is observed through the section, from prodelta to delta front and intertidal settings. The hydrodynamic energy and the sedimentation rate are not constant through the section, but they are influenced by hyperpycnal flows, whose sediments were mainly supplied by an increase in Apennine uplift and erosion, especially after 1.80 Ma. The Arda section documents the same evolutionary history of coeval successions in the Paleo-Adriatic region, as well as the climatic changes of the early Pleistocene. The different approaches used complement quite well one another, giving strength and robustness to the obtained results.


2000 ◽  
Vol 54 (2) ◽  
pp. 198-205 ◽  
Author(s):  
Jun Chen ◽  
Junfeng Ji ◽  
Yang Chen ◽  
Zhisheng An ◽  
John A. Dearing ◽  
...  

Rb concentrations, analyzed at 20-cm intervals from the Luochuan sequence of loess and paleosols, are sensitive to the loess–paleosol alternation controlled by monsoon climate. Because it is geochemically immobile, Rb can be well preserved in the loess–paleosol sequence after deposition, and its concentration depends mainly on properties of the winter monsoon-blown dust and on intensity of the summer monsoon-induced pedogenesis. A curvilinear relation has been developed between the measured Rb-concentration and the apparent sedimentation rate for the last glacial–interglacial cycle. This relation provides a time scale that corresponds well with the presently accepted ages for paleomagnetic reversals of Brunhes/Matuyama and Jaramillo events. With allowance for reduced Rb concentrations caused by early Pleistocene climate, the Rb-based time scale is also consistent with the boundary ages of other major paleomagnetic reversals of the past 2.58 myr.


2021 ◽  
Author(s):  
Nicholas Golledge

<p>During the Pleistocene (approximately 2.6 Ma to present) glacial to interglacial climate variability evolved from dominantly 40 kyr cyclicity (Early Pleistocene) to 100 kyr cyclicity (Late Pleistocene to present). Three aspects of this period remain poorly understood: Why did the dominant frequency of climate oscillation change, given that no major changes in orbital forcing occurred? Why are the longer glacial cycles of the Late Pleistocene characterised by a more asymmetric form with abrupt terminations? And how can the Late Pleistocene climate be controlled by 100 kyr cyclicity when astronomical forcings of this frequency are so much weaker than those operating on shorter periods? Here we show that the decreasing frequency and increasing asymmetry that characterise Late Pleistocene ice age cycles both emerge naturally in dynamical systems in response to increasing system complexity, with collapse events (terminations) occuring only once a critical state has been reached. Using insights from network theory we propose that evolution to a state of criticality involves progressive coupling between climate system 'nodes', which ultimately allows any component of the climate system to trigger a globally synchronous termination. We propose that the climate state is synchronised at the 100 kyr frequency, rather than at shorter periods, because eccentricity-driven insolation variability controls mean temperature change globally, whereas shorter-period astronomical forcings only affect the spatial pattern of thermal forcing and thus do not favour global synchronisation. This dynamical systems framework extends and complements existing theories by accomodating the differing mechanistic interpretations of previous studies without conflict.</p>


2017 ◽  
Vol 47 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Carrel Kifumbi ◽  
Claiton Marlon dos Santos Scherer ◽  
Fábio Herbert Jones ◽  
Juliano Kuchle

ABSTRACT: The present work aims to characterize the Neo-Jurassic to Neocomian succession of the Sergipe-Alagoas Basin, located in northeast region of Brazil, in order to discover the influence of tectonics on sedimentation in detailed scale and thus separating this sedimentary succession in tectono-stratigraphic units. Fieldwork observations and stratigraphic sections analysis allowed subdividing this rift succession into three depositional units that indicate different paleogeographic contexts. Unit I, equivalent to the top of Serraria Formation, is characterized by braided fluvial channel deposits, with paleocurrent direction to SE; unit II, corresponding to the base of Feliz Deserto Formation, is composed of anastomosed fluvial channel and floodplain facies associations; and unit III, equivalent to the major part of Feliz Deserto Formation, is characterized by delta deposits with polymodal paleocurrent pattern. The changes of depositional system, as well as paleocurrent direction, suggest that the previously described units were deposited in different evolutionary stages of rifting. Units I and II represent the record of a wide and shallow basin associated with the first stage of rifting. Unit I is characterized by incipient extensional stress generating a wide synclinal depression, associated to the low rate of accommodation and low tectonic activity. These two parameters progressively increase in unit II. The paleocurrent direction of unit I indicates that the depocenter of this wide basin was located at SE of the studied area. No conclusion could be done on paleocurrent from unit II because of the low amount of measurements. Unit III suggests a second stage marked by a deeper basin context, with a high rate of accommodation space associated with the lateral connection of faults and individualization of the half-graben. The scattering in the paleocurrent direction in this unit indicates sedimentary influx coming from several sectors of the half-graben. The boundary between these two stages is marked by a flooding surface that indicates an extremely fast transition and suggests a radical change in geometric characteristics of the basin due to the increase of tectonic activity.


2009 ◽  
Vol 96 (4) ◽  
pp. 249-262 ◽  
Author(s):  
Brian McGowran ◽  
Bill Berggren ◽  
Frits Hilgen ◽  
Fritz Steininger ◽  
Marie-Pierre Aubry ◽  
...  

2007 ◽  
Vol 67 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Sébastien Joannin ◽  
Frédéric Quillévéré ◽  
Jean-Pierre Suc ◽  
Christophe Lécuyer ◽  
François Martineau

AbstractVegetation inherited from a Pliocene subtropical climate evolved through obliquity oscillations and global cooling leading to modern conditions. An integrated, highly time-resolved record of pollen and stable isotopes (δ18O and δ13C of Globigerina bulloides) was obtained to understand vegetation responses to Early Pleistocene climate changes. Continental and marine responses are compared in the Central Mediterranean region with a particular consideration of environmental changes during anoxic events.Pollen data illustrate vegetation dynamics as follows: [1] development of mesothermic elements (warm and humid conditions); [2] expansion of mid- and high-altitude elements (cooler but still humid conditions); and [3] strengthening of steppe and herb elements (cooler and dry conditions). These successions correlate with precession. δ18O variations recorded by Globigerina bulloides define two cycles (MIS 43-40) related to obliquity. At northern low- to mid-latitudes, the pollen signal records temperature and wetness changes related to precession even during global climate changes induced by obliquity. This may result in unexpected increasing wetness during glacial periods, which has to be considered specific to the Central and Eastern Mediterranean region. Lastly, an analysis of anoxic events reveals that enhanced runoff is indicated by increasing frequency of the riparian trees Liquidambar and Zelkova.


1997 ◽  
Vol 40 (4) ◽  
Author(s):  
M. Viti ◽  
D. Albarello ◽  
E. Mantovani

Seismological investigations have provided an estimate of the gross structnral features of the crust/upper mantle system in the Mediterranean area. However, this information is only representative of the short-term me- chanical behaviour of rocks and cannot help us to understand slow deformations and related tectonic processes on the geological time scale. In this work strength envelopes for several major structural provinces of the Mediterranean area have been tentatively derived from seismological stratification and heat flow data, on the assumption of constant and uniforrn strain rate (10-16 S-1), wet rocks and conductive geotherm. It is also shown how the uncertainties in the reconstruction of thermal profiles can influence the main rheological prop- erties of the lithosphere, as thickness and total strength. The thickest (50-70 km) and strongest mechanical lithospheres correspond to the coldest zones (with heat flow lower than or equal to 50 mW m-2), i.e., the Io- nian and Levantine mesozoic basins, the Adriatic and Eurasian foreland zones and NW Greece. Heat flows larger than 65 mW m-2, generally observed in extensional zones (Tyrrhenian, Sicily Channel, Northern Aegean, Macedonia and Western Turkey), are mostly related to mechanical lithospheres thinner than 20 km. The characteristics of strength envelopes, and in particular the presence of soft layers in the crust, suggest a reasonable interpretation of some large-scale features which characterize the tectonic evolution of the Central- Eastem Mediterranean.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pablo Granado ◽  
Jonas B. Ruh ◽  
Pablo Santolaria ◽  
Philipp Strauss ◽  
Josep Anton Muñoz

We present a series of 2D thermo-mechanical numerical experiments of thick-skinned crustal extension including a pre-rift salt horizon and subsequent thin-, thick-skinned, or mixed styles of convergence accompanied by surface processes. Extension localization along steep basement faults produces half-graben structures and leads to variations in the original distribution of pre-rift salt. Thick-skinned extension rate and salt rheology control hanging wall accommodation space as well as the locus and timing of minibasin grounding. Upon shortening, extension-related basement steps hinder forward propagation of evolving shallow thrust systems; conversely, if full basin inversion takes place along every individual fault, the regional salt layer is placed back to its pre-extensional configuration, constituting a regionally continuous décollement. Continued shortening and basement involvement deform the shallow fold-thrust structures and locally breaches the shallow décollement. We aim at obtaining a series of structural, stratigraphic and kinematic templates of fold-and-thrust belts involving rift basins with an intervening pre-rift salt horizon. Numerical results are compared to natural cases of salt-related inversion tectonics to better understand their structural evolution.


Sign in / Sign up

Export Citation Format

Share Document